A transmission shaft supporting a helical gear B and an overhung bevel gear D is shown in Fig. 9.10. The shaft is mounted on two bearings, A and C. The pitch circle diameter of the helical gear is 450 mm and the diameter of the bevel gear at the forces is 450 mm. Power is transmitted from the helical gear to the bevel gear. The gears are keyed to the shaft. The material of the shaft is steel 45C8 (Sut = 600 and Syt = 380 N/ mm”). The factors ky and k, of ASME code are 2.0 and 1.5 respectively. Determine the shaft diameter using the ASME code.
A transmission shaft supporting a helical gear B and an overhung bevel gear D is shown in Fig. 9.10. The shaft is mounted on two bearings, A and C. The pitch circle diameter of the helical gear is 450 mm and the diameter of the bevel gear at the forces is 450 mm. Power is transmitted from the helical gear to the bevel gear. The gears are keyed to the shaft. The material of the shaft is steel 45C8 (Sut = 600 and Syt = 380 N/ mm”). The factors ky and k, of ASME code are 2.0 and 1.5 respectively. Determine the shaft diameter using the ASME code.
Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
Related questions
Question
A transmission shaft supporting a helical gear B and an overhung bevel gear D is shown in Fig. 9.10. The shaft is mounted on two bearings, A and C. The pitch circle diameter of the helical gear is 450 mm and the diameter of the bevel gear at the forces is 450 mm. Power is transmitted from the helical gear to the bevel gear. The gears are keyed to the shaft. The material of the shaft is steel 45C8 (Sut = 600 and Syt = 380 N/ mm”). The factors ky and k, of ASME code are 2.0 and 1.5 respectively. Determine the shaft diameter using the ASME code.

Transcribed Image Text:Example 9.6 A transmission shaft supporting
a helical
shown in Fig. 9.10. The shaft is mounted on two
bearings, A and C. The pitch circle diameter of
the helical gear is 450 mm and the diameter of
the bevel gear at the forces is 450 mm. Power is
transmitted from the helical gear to the bevel gear.
The gears are keyed to the shaft. The material of
the shaft is steel 45C8 (S
mm?). The factors k, and k, of ASME code are 2.0
and 1.5 respectively. Determine the shaft diameter
using the ASME code.
gear
B and an overhung bevel gear D is
= 600 and Sy = 380 N/
400
A
400
В
400
270
250
640
210 640
100
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 3 steps with 5 images

Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Recommended textbooks for you

Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press

Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON

Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education

Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press

Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON

Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education

Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY

Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning

Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY