A thin-walled, hollow spherical shell of mass m and radius r starts from rest and rolls without slipping down the track shown in the figure (Figure 1). Points A and B are on a circular part of the track having radius R. The diameter of the shell is very small compared to ho and R, and the work done by the rolling friction is negligible. Figure Shell ho В. 1 of 1 What is the minimum height ho for which this shell will make a complete loop-the-loop on the circular part of the track? Express your answer in terms of the variables m, R, and appropriate constants. ho = Submit Part B |Π| ΑΣΦ N = Request Answer ? How hard does the track push on the shell at point B, which is at the same level as the center of the circle? Express your answer in terms of the variables m, R, and appropriate constants. ΠΙ ΑΣΦ ?
Angular Momentum
The momentum of an object is given by multiplying its mass and velocity. Momentum is a property of any object that moves with mass. The only difference between angular momentum and linear momentum is that angular momentum deals with moving or spinning objects. A moving particle's linear momentum can be thought of as a measure of its linear motion. The force is proportional to the rate of change of linear momentum. Angular momentum is always directly proportional to mass. In rotational motion, the concept of angular momentum is often used. Since it is a conserved quantity—the total angular momentum of a closed system remains constant—it is a significant quantity in physics. To understand the concept of angular momentum first we need to understand a rigid body and its movement, a position vector that is used to specify the position of particles in space. A rigid body possesses motion it may be linear or rotational. Rotational motion plays important role in angular momentum.
Moment of a Force
The idea of moments is an important concept in physics. It arises from the fact that distance often plays an important part in the interaction of, or in determining the impact of forces on bodies. Moments are often described by their order [first, second, or higher order] based on the power to which the distance has to be raised to understand the phenomenon. Of particular note are the second-order moment of mass (Moment of Inertia) and moments of force.
help
Trending now
This is a popular solution!
Step by step
Solved in 5 steps with 5 images