A temperature measurement system is composed of a sensor and a readout device. The readout device has a claimed accuracy of 0.6 °C with a resolution of 0.1 °C. The sensor has an off-the-shelf limit of error of 0.5 °C. Estimate a design-stage uncertainty in the temperature indicated by this combination.
Theory and Design for Mechanical Measurements
Measurement is a term that refers to analyzing a manufactured component regarding the degree of accuracy for dimensions, tolerances, geometric profile, roundness, flatness, smoothness, etc. Measurement always involves comparing the manufactured component or the prototype with a standard specimen whose dimensions and other parameters are assumed to be perfect and do not undergo changes with respect to time.Precisely in mechanical engineering the branch that deals with the application of scientific principles for measurements is known as metrology. The domain of metrology in general deals with various measurements like mechanical, chemical, thermodynamic, physical, and biological measurements. In mechanical engineering, the measurements are limited to mechanical specific such as length, mass, surface profile, flatness, roundness, viscosity, heat transfer, etc.
Basic principles of engineering metrology
Metrology is described as the science of measurement, precision, and accuracy. In other words, it is a method of measurement based on units and predefined standards.
-
A temperature measurement system is composed of a sensor and a readout device. The readout device has a claimed accuracy of 0.6 °C with a resolution of 0.1 °C. The sensor has an off-the-shelf limit of error of 0.5 °C. Estimate a design-stage uncertainty in the temperature indicated by this combination.
-
A displacement transducer has the following specifications:
Linearity error:±0.25% reading
Drift:±0.05%/°C reading
Sensitivity error: ±0.25% readingExcitation: 10-25 V
Output: dc 0-5Vdc
Range: 0-5 cm
The transducer output is to be indicated on a voltme- ter having a stated accuracy of 0:1% reading with a resolution of 10 μV. The system is to be used at room temperature, which can vary by 10 °C. Estimate an uncertainty in a nominal displacement of 2 cm at the design stage. Assume 95% confidence.

Trending now
This is a popular solution!
Step by step
Solved in 4 steps









