A temperature control system consists of four thermostats controlling three heating units. The thermostat contacts are set to close at 50°, 60°, 70°, and 80°F, respectively. The PLC ladder logic program is to be designed so that at a temperature below 50°F, three heaters are to be ON. From 50° to 60°F, two heaters are to be ON. For 60° to 70°F, one heater is to be ON. Above 80°F, there is a safety shutoff for all three heaters in case one stays on because of a malfunction. A master switch is to be used to turn the system ON and OFF. Prepare a typical PLC program for this control process.
A temperature control system consists of four thermostats controlling three heating units. The thermostat contacts are set to close at 50°, 60°, 70°, and 80°F, respectively. The PLC ladder logic program is to be designed so that at a temperature below 50°F, three heaters are to be ON. From 50° to 60°F, two heaters are to be ON. For 60° to 70°F, one heater is to be ON. Above 80°F, there is a safety shutoff for all three heaters in case one stays on because of a malfunction. A master switch is to be used to turn the system ON and OFF. Prepare a typical PLC program for this control process.
Introductory Circuit Analysis (13th Edition)
13th Edition
ISBN:9780133923605
Author:Robert L. Boylestad
Publisher:Robert L. Boylestad
Chapter1: Introduction
Section: Chapter Questions
Problem 1P: Visit your local library (at school or home) and describe the extent to which it provides literature...
Related questions
Question

Transcribed Image Text:A temperature control system consists of four
thermostats controlling three heating units. The
thermostat contacts are set to close at 50°, 60°,
70°, and 80°F, respectively. The PLC ladder logic
program is to be designed so that at a temperature
below 50°F, three heaters are to be ON. From 50°
to 60°F, two heaters are to be ON. For 60° to 70°F,
one heater is to be ON. Above 80°F, there is a
safety shutoff for all three heaters in case one stays
on because of a malfunction. A master switch is to
be used to turn the system ON and OFF. Prepare a
typical PLC program for this control process.
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 2 steps with 1 images

Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, electrical-engineering and related others by exploring similar questions and additional content below.Recommended textbooks for you

Introductory Circuit Analysis (13th Edition)
Electrical Engineering
ISBN:
9780133923605
Author:
Robert L. Boylestad
Publisher:
PEARSON

Delmar's Standard Textbook Of Electricity
Electrical Engineering
ISBN:
9781337900348
Author:
Stephen L. Herman
Publisher:
Cengage Learning

Programmable Logic Controllers
Electrical Engineering
ISBN:
9780073373843
Author:
Frank D. Petruzella
Publisher:
McGraw-Hill Education

Introductory Circuit Analysis (13th Edition)
Electrical Engineering
ISBN:
9780133923605
Author:
Robert L. Boylestad
Publisher:
PEARSON

Delmar's Standard Textbook Of Electricity
Electrical Engineering
ISBN:
9781337900348
Author:
Stephen L. Herman
Publisher:
Cengage Learning

Programmable Logic Controllers
Electrical Engineering
ISBN:
9780073373843
Author:
Frank D. Petruzella
Publisher:
McGraw-Hill Education

Fundamentals of Electric Circuits
Electrical Engineering
ISBN:
9780078028229
Author:
Charles K Alexander, Matthew Sadiku
Publisher:
McGraw-Hill Education

Electric Circuits. (11th Edition)
Electrical Engineering
ISBN:
9780134746968
Author:
James W. Nilsson, Susan Riedel
Publisher:
PEARSON

Engineering Electromagnetics
Electrical Engineering
ISBN:
9780078028151
Author:
Hayt, William H. (william Hart), Jr, BUCK, John A.
Publisher:
Mcgraw-hill Education,