A team of psychologists studied the concept of visualization in basketball, where players visualize making a basket before shooting the ball. They conducted an experiment in which 20 basketball players with similar abilities were randomly assigned to two groups. The 10 players in group 1 received visualization training, and the 10 players in group 2 did not. Each player stood 22 feet from the basket at the same location on the basketball court. Each player was then instructed to attempt to make the basket until two consecutive baskets were made. The players who received visualization training were instructed to use visualization techniques before attempting to make the basket. The total number of attempts, including the last two attempts, were recorded for each player. The total number of attempts for each of the 20 players are summarized
Addition Rule of Probability
It simply refers to the likelihood of an event taking place whenever the occurrence of an event is uncertain. The probability of a single event can be calculated by dividing the number of successful trials of that event by the total number of trials.
Expected Value
When a large number of trials are performed for any random variable ‘X’, the predicted result is most likely the mean of all the outcomes for the random variable and it is known as expected value also known as expectation. The expected value, also known as the expectation, is denoted by: E(X).
Probability Distributions
Understanding probability is necessary to know the probability distributions. In statistics, probability is how the uncertainty of an event is measured. This event can be anything. The most common examples include tossing a coin, rolling a die, or choosing a card. Each of these events has multiple possibilities. Every such possibility is measured with the help of probability. To be more precise, the probability is used for calculating the occurrence of events that may or may not happen. Probability does not give sure results. Unless the probability of any event is 1, the different outcomes may or may not happen in real life, regardless of how less or how more their probability is.
Basic Probability
The simple definition of probability it is a chance of the occurrence of an event. It is defined in numerical form and the probability value is between 0 to 1. The probability value 0 indicates that there is no chance of that event occurring and the probability value 1 indicates that the event will occur. Sum of the probability value must be 1. The probability value is never a negative number. If it happens, then recheck the calculation.
A team of psychologists studied the concept of visualization in basketball, where players visualize making a basket before shooting the ball. They conducted an experiment in which 20 basketball players with similar abilities were randomly assigned to two groups. The 10 players in group 1 received visualization training, and the 10 players in group 2 did not.
Each player stood 22 feet from the basket at the same location on the basketball court. Each player was then instructed to attempt to make the basket until two consecutive baskets were made. The players who received visualization training were instructed to use visualization techniques before attempting to make the basket. The total number of attempts, including the last two attempts, were recorded for each player.
The total number of attempts for each of the 20 players are summarized in the following boxplots.
(a) Based on the boxplots, did basketball players who received visualization training tend to need fewer attempts to make two consecutive baskets from a distance of 22 feet than players who did not receive the training? Explain your reasoning.
(b) State and check conditions for conducting a two-sample t-test for a difference in means.
Because both distributions, visualization (V) and no visualization (NV), are skewed, the psychologists conducted a simulation to test for a difference in
(c) Using the observed difference in medians (V−NV) and the results of the simulation, estimate a p-value for a test for the difference in medians. Show the work needed to calculate this p-value.
(d) Based on the p-value in part (c), is there convincing statistical evidence that basketball players similar to the ones in this study who receive visualization training need fewer attempts to make two consecutive baskets from a distance of 22 feet than those who do not receive such training? Justify your answer.
Trending now
This is a popular solution!
Step by step
Solved in 5 steps