A survey of 2284 adults in a certain large country aged 18 and older conducted by a reputable polling organization found that 408 have donated blood in the past two years. Complete parts (a) through (c) below. Click here to view the standard normal distribution table (page 1). Click here to view the standard normal distribution table (page 2). (a) Obtain a point estimate for the population proportion of adults in the country aged 18 and older who have donated blood in the past two years. (Round to three decimal places as needed.)
Continuous Probability Distributions
Probability distributions are of two types, which are continuous probability distributions and discrete probability distributions. A continuous probability distribution contains an infinite number of values. For example, if time is infinite: you could count from 0 to a trillion seconds, billion seconds, so on indefinitely. A discrete probability distribution consists of only a countable set of possible values.
Normal Distribution
Suppose we had to design a bathroom weighing scale, how would we decide what should be the range of the weighing machine? Would we take the highest recorded human weight in history and use that as the upper limit for our weighing scale? This may not be a great idea as the sensitivity of the scale would get reduced if the range is too large. At the same time, if we keep the upper limit too low, it may not be usable for a large percentage of the population!
![A survey of 2284 adults in a certain large country aged 18 and older conducted by a reputable polling organization found that 408 have donated blood in the past two
years. Complete parts (a) through (c) below.
Click here to view the standard normal distribution table (page 1).
Click here to view the standard normal distribution table (page 2).
(a) Obtain a point estimate for the population proportion of adults in the country aged 18 and older who have donated blood in the past two years.
(Round to three decimal places as needed.)
Standard Normal Distribution Table (page 1)
%3
Area
Standard Normal Distribution
0.00
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09
-34
-33
-3.2
0.0003
0.0005
0.0007
0.0003
0.0005
0.0007
0.0003
0.0005
0.0006
0.0003
0.0004
0.0006
0.0003
0.0004
0.0006
0.0003
0.0004
0.0006
0.0003
0.0004
0.0006
0.0003
0.0004
0.0003
0.0004
0.0005
0.0007
0.0002
0.0003
0.0010
0.0013
0.0008
0.0011
0.0005
0.0008
0.0011
0.0005
0.0007
0.0009
0.0009
0.0009
0.0008
0.0008
-30
0.0013
0.0013
0.0012
0.0012
0.0011
0.0010
0.0010
-29
-28
0.0019
0.0026
0.0035
0.0047
0.0062
0.0018
0.0025
0.0034
0.0018
0.0024
0.0033
0.0016
0.0023
0.0031
0.0015
0.0021
0.0029
0.0017
0.0016
0.0015
0.0021
0.0014
0.0020
0.0014
0.0019
0.0023
0.0032
0.0043
0.0057
0.0022
0.0030
-2.7
-26
-2.5
0.0028
0.0038
0.0027
0.0037
0.0049
0.0026
0.0036
0.0048
0.0045
0.0044
0.0059
0.0041
0.0040
0.0039
0.0060
0.0055
0.0054
0.0052
0.0051
0.0082
0.0107
0.0139
0.0078
0.0102
0.0132
0.0170
ー24
-23
0.0080
0.0104
0.0136
0.0075
0.0099
0.0073
0.0096
0.0071
0.0094
0.0069
0.0091
0.0119
0.0068
0.0089
0.0066
0.0087
0.0113
0.0064
0.0084
0.0110
-2.2
-2.1
0.0129
0.0166
0.0125
0.0162
0.0122
0.0158
0.0116
0.0150
0.0179
0.0174
0.0154
0.0146
0.0143
-2.0
0.0228
0.0222
0.0217
0.0212
0.0207
0.0202
0.0197
0.0192
0.0188
0.0183
-1.9
-1.8
-1.7
0.0287
0.0359
0.0446
0.0281
0.0351
0.0436
0.0274
0.0344
0.0427
0.0268
0.0336
0.0418
0.0262
0.0329
0.0409
0.0256
0.0322
0.0401
0.0250
0.0314
0.0392
0.0244
0.0307
0.0384
0.0239
0.0301
0.0375
0.0465
0.0571
0.0233
0.0294
0.0367
0.0455
-1.6
-1.5
0.0548
0.0537
0.0526
0.0516
0.0505
0.0618
0.0495
0.0606
0.0485
0.0475
0.0668
0.0655
0.0643
0.0630
0.0594
0.0582
0.0559
0.0808
0.0968
0.1151
0.0793
0.0951
0.1131
0.0778
0.0934
0.1112
0.0764
-14
-13
-1.2
0.0749
0.0901
0.1075
0.0735
0.0885
0.1056
0.0721
0.0869
0.1038
0.0708
0.0853
0.1020
0.0694
0.0838
0.1003
0.0681
0.0823
0.0985
0.0918
0.1093
-1.1
-1.0
0.1357
0.1587
0.1335
0.1314
0.1539
0.1292
0.1515
0.1271
0.1492
0.1251
0.1469
0.1230
0.1446
0.1210
0.1423
0.1190
0.1170
0.1562
0.1401
0.1379
0.1841
02119
0.2420
02743
0.3085
0.1814
0.2090
0.2389
0.2709
0.3050
0.1788
0.2061
0.2358
0.1762
0.2033
0.2327
0.2643
0.2981
0.1736
0.2005
0.2296
0.2611
0.2946
0.1711
0.1977
0.2266
0.1685
0.1949
0.2236
0.1611
0.1867
02148
0.1660
-0,9
-08
-0.7
0.1922
0.2206
0.2514
0.2843
0.1635
0,1894
0.2177
0.2483
0.2810
-0.6
-0.5
0.2676
0.3015
0.2578
0.2912
0.2546
0.2877
0.2451
0.2776
0.3446
0.3821
0.4207
0.4602
0.5000
0.3409
0.3783
04168
0.3372
0.3745
0.3336
-04
-0.3
-0.2
0.3300
0.3669
0.4052
0.4443
0.4840
0.3264
0.3632
0.4013
0.3228
0.3594
0.3974
0.4364
0.4761
0.3192
0.3557
0.3936
0.4325
0.4721
0.3156
0.3520
0.3897
0.4286
0.4681
0.3121
0.3483
0.3859
0.4247
0.4641
0.3707
0.4000
-0.1
-0.0
04562
0.4960
04129
0.4522
0.4920
0.4483
04880
0.4404
0.4801
0,00
0.01
0.02
0,03
0.04
0.05
0.06
0.07
0.08
0.09](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F2e4271db-55ad-407c-9ad7-162addea5a96%2Ffbda37b3-f11c-4a94-9a96-ee220e4075d1%2Fa418ygm_processed.jpeg&w=3840&q=75)
![Standard Normal Distribution Table (page 2)
Area
Standard Normal Distribution
0,00
0.01
0.02
0.03
0.04
0.05
0,06
0.07
0.08
0.09
0.5000
0.5398
0.5793
0.6179
0.6554
0.5040
0.5438
0.5832
0.6217
0.6591
0.5080
0.5478
0.5871
0.5120
0.5517
0.5910
0.5160
0.5557
0.5948
0.5199
0.5596
0.5987
0.6368
0.6736
0,5239
0,5636
0.6026
0.6406
0.6772
0.5279
0.5675
0.6064
0.6443
0.6808
0,5319
0.5714
0.6103
0.6480
0.6844
0.0
0,5359
0.5753
0.1
0.2
0.6141
0.6255
0.6628
0.6293
0,6664
0.6331
0.6700
0.6517
0.6879
0.3
0.4
0.7019
0.7357
0.7673
0.7054
0.7389
0.7704
0.7995
0.8264
0.7123
0.7454
0.7764
0.8051
0.8315
0.7157
0.7486
0.7794
0.8078
0.8340
0,5
0.6915
0.7257
0.7580
0.7881
0.8159
0.6950
0.7291
0.7611
0.6985
0.7324
0.7642
0.7939
0.8212
0.7088
0.7422
0.7734
0.7190
0.7517
0.7823
0.7224
0.7549
0.7852
0.6
0.7
0.7910
0.8186
0.7967
0,8238
0.8023
0.8289
0.8106
0.8365
0.8
0.8133
0.8389
0.9
0.8438
0,8665
0.8869
0.9049
0,8461
0.8686
0,8888
0.8485
0.8708
0.8907
0.9082
0.9236
0.8554
0.8770
0.8962
0.9131
0.9279
0.8599
0.8810
0.8997
0.9162
0.9306
1.0
0.8413
0.8643
0.8849
0.9032
0.9192
0.8508
0.8729
0.8925
0.8531
0.8749
0.8944
0.8577
0.8790
0.8980
0.9147
0.9292
0.8621
0.8830
0.90 15
0.9177
0.9319
1.1
1.2
1.3
1.4
0.9066
0.9222
0.9115
0.9265
0.9099
0.9207
0.9251
0.9332
0.9452
0.9554
0.9641
0,9713
0.9345
0.9463
0.9564
0.9649
0.9719
0,9357
0,9474
0.9573
0.9656
0.9370
0,9484
0.9582
0.9664
0.9732
0.9429
0.9535
0.9625
0.9699
0.9761
0.9441
0.9545
0.9633
0.9706
0.9767
1.5
0.9382
0.9495
0.9591
0.9671
0.9738
0.9394
0,9505
0.9599
0.9678
0.9744
0.9406
0.9515
0.9608
0.9686
0.9750
0.9418
0.9525
0.9616
1.6
1.7
1.8
0.9693
0.9756
1.9
0.9726
2.0
2.1
2.2
2.3
2.4
0.9772
0.9821
0.9861
0.9893
0.9918
0.9778
0.9826
0.9864
0.9896
0.9920
0.9783
0.9830
0.9868
0.9788
0.9834
0.9871
0.9901
0.9925
0.9793
0.9838
0.9875
0,9904
0.9927
0.9798
0.9842
0.9878
0.9906
0.9929
0.9803
0.9846
0.9881
0.9909
0.9931
0.9808
0.9850
0.9884
0.9911
0.9932
0.9812
0.9854
0.9887
0.9913
0.9934
0.9817
0,9857
0.9890
0.9916
0.9936
0.9898
0.9922
2.5
2.6
2.7
0.9938
0.9953
0.9965
0.9940
0.9955
0.9966
0.9941
0.9956
0.9967
0.9943
0.9957
0.9968
0.9977
0.9983
0.9945
0.9959
0.9969
0.9977
0.9946
0.9960
0.9970
0.9978
0.9984
0.9948
0.9961
0.9971
0.9979
0.9985
0.9949
0.9962
0.9972
0.9979
0.9985
0.9951
0.9963
0.9973
0.9952
0.9964
0.9974
2.8
2.9
0.9974
0.9981
0.9975
0.9982
0.9981
0.9986
0.9976
0.9980
0.9986
0.9982
0.9984
3.0
3.1
3.2
3.3
3.4
0.9987
0.990
0.9993
0.9995
0.9997
0.9987
0.9991
0.9993
0.9995
0.9997
0.9989
0.9992
0.9994
0.9989
0.9992
0.9995
0.9996
0.9997
0.9990
0.9993
0.9995
0.9990
0.9993
0.9995
0.9997
0.9998
0,9987
0,9901
0,9994
0.9995
0.9997
0.9988
0.9991
0.9994
0.9996
0.9997
0.9988
0.9992
0.9994
0.9989
0.9992
0.9994
0.9996
0.9997
0.9996
0.9997
0.9996
0,9997
0.9996
0.9997
0.00
0,01
0.02
0.03
0.04
0.05
0.06
0,07
0.08
0.09
Print
Done
wer i](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F2e4271db-55ad-407c-9ad7-162addea5a96%2Ffbda37b3-f11c-4a94-9a96-ee220e4075d1%2F4bfx85_processed.jpeg&w=3840&q=75)
![](/static/compass_v2/shared-icons/check-mark.png)
Trending now
This is a popular solution!
Step by step
Solved in 2 steps with 1 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
![MATLAB: An Introduction with Applications](https://www.bartleby.com/isbn_cover_images/9781119256830/9781119256830_smallCoverImage.gif)
![Probability and Statistics for Engineering and th…](https://www.bartleby.com/isbn_cover_images/9781305251809/9781305251809_smallCoverImage.gif)
![Statistics for The Behavioral Sciences (MindTap C…](https://www.bartleby.com/isbn_cover_images/9781305504912/9781305504912_smallCoverImage.gif)
![MATLAB: An Introduction with Applications](https://www.bartleby.com/isbn_cover_images/9781119256830/9781119256830_smallCoverImage.gif)
![Probability and Statistics for Engineering and th…](https://www.bartleby.com/isbn_cover_images/9781305251809/9781305251809_smallCoverImage.gif)
![Statistics for The Behavioral Sciences (MindTap C…](https://www.bartleby.com/isbn_cover_images/9781305504912/9781305504912_smallCoverImage.gif)
![Elementary Statistics: Picturing the World (7th E…](https://www.bartleby.com/isbn_cover_images/9780134683416/9780134683416_smallCoverImage.gif)
![The Basic Practice of Statistics](https://www.bartleby.com/isbn_cover_images/9781319042578/9781319042578_smallCoverImage.gif)
![Introduction to the Practice of Statistics](https://www.bartleby.com/isbn_cover_images/9781319013387/9781319013387_smallCoverImage.gif)