A study was done to look at the relationship between number of vacation days employees take each year and the number of sick days they take each year. The results of the survey are shown below. Vacation Days 11 0 10 10 2 3 4 1 9 14 7 Sick Days 4 10 -0 6 7 6 8 9 0 0 3 Find the correlation coefficient:  r=r=   Round to 2 decimal places. The null and alternative hypotheses for correlation are: H0:H0:      == 0 H1:H1:       ≠≠ 0     The p-value is:    (Round to four decimal places) Use a level of significance of α=0.05α=0.05 to state the conclusion of the hypothesis test in the context of the study. There is statistically insignificant evidence to conclude that there is a correlation between the number of vacation days taken and the number of sick days taken. Thus, the use of the regression line is not appropriate. There is statistically significant evidence to conclude that an employee who takes more vacation days will take more sick days than an employee who takes fewer vacation days. There is statistically significant evidence to conclude that there is a correlation between the number of vacation days taken and the number of sick days taken. Thus, the regression line is useful. There is statistically significant evidence to conclude that an employee who takes more vacation days will take fewer sick days than an employee who takes fewer vacation days .  r2r2 =  (Round to two decimal places)    Interpret r2r2 :   There is a large variation in the number of sick days employees take, but if you only look at employees who take a fixed number of vacation days, this variation on average is reduced by 70%. Given any group with a fixed number of vacation days taken, 70% of all of those employees will take the predicted number of sick days. 70% of all employees will take the average number of sick days. There is a 70% chance that the regression line will be a good predictor for the number of sick days taken based on the number of vacation days taken. The equation of the linear regression line is:    ˆyy^ =  + xx   (Please show your answers to two decimal places)   Use the model to predict the number of sick days taken for an employee who took 3 vacation days this year. Sick Days =  (Please round your answer to the nearest whole number.)   Interpret the slope of the regression line in the context of the question:   As x goes up, y goes down. For every additional vacation day taken, employees tend to take on average 0.66 fewer sick days. The slope has no practical meaning since a negative number cannot occur with vacation days and sick days. Interpret the y-intercept in the context of the question: The best prediction for an employee who doesn't take any vacation days is that the employee will take 9 sick days. If an employee takes no vacation days, then that employee will take 9 sick days. The average number of sick days is predicted to be 9. The y-intercept has no practical meaning for this study.

MATLAB: An Introduction with Applications
6th Edition
ISBN:9781119256830
Author:Amos Gilat
Publisher:Amos Gilat
Chapter1: Starting With Matlab
Section: Chapter Questions
Problem 1P
icon
Related questions
icon
Concept explainers
Question

A study was done to look at the relationship between number of vacation days employees take each year and the number of sick days they take each year. The results of the survey are shown below.

Vacation Days 11 0 10 10 2 3 4 1 9 14 7
Sick Days 4 10 -0 6 7 6 8 9 0 0 3
  1. Find the correlation coefficient:  r=r=   Round to 2 decimal places.
  2. The null and alternative hypotheses for correlation are:
    H0:H0:      == 0
    H1:H1:       ≠≠ 0    
    The p-value is:    (Round to four decimal places)

  3. Use a level of significance of α=0.05α=0.05 to state the conclusion of the hypothesis test in the context of the study.
    • There is statistically insignificant evidence to conclude that there is a correlation between the number of vacation days taken and the number of sick days taken. Thus, the use of the regression line is not appropriate.
    • There is statistically significant evidence to conclude that an employee who takes more vacation days will take more sick days than an employee who takes fewer vacation days.
    • There is statistically significant evidence to conclude that there is a correlation between the number of vacation days taken and the number of sick days taken. Thus, the regression line is useful.
    • There is statistically significant evidence to conclude that an employee who takes more vacation days will take fewer sick days than an employee who takes fewer vacation days .
  4.  r2r2 =  (Round to two decimal places)  
  5.  Interpret r2r2 :  
    • There is a large variation in the number of sick days employees take, but if you only look at employees who take a fixed number of vacation days, this variation on average is reduced by 70%.
    • Given any group with a fixed number of vacation days taken, 70% of all of those employees will take the predicted number of sick days.
    • 70% of all employees will take the average number of sick days.
    • There is a 70% chance that the regression line will be a good predictor for the number of sick days taken based on the number of vacation days taken.
  6. The equation of the linear regression line is:   
    ˆyy^ =  + xx   (Please show your answers to two decimal places)  

  7. Use the model to predict the number of sick days taken for an employee who took 3 vacation days this year.
    Sick Days =  (Please round your answer to the nearest whole number.)  

  8. Interpret the slope of the regression line in the context of the question:  
    • As x goes up, y goes down.
    • For every additional vacation day taken, employees tend to take on average 0.66 fewer sick days.
    • The slope has no practical meaning since a negative number cannot occur with vacation days and sick days.


  9. Interpret the y-intercept in the context of the question:
    • The best prediction for an employee who doesn't take any vacation days is that the employee will take 9 sick days.
    • If an employee takes no vacation days, then that employee will take 9 sick days.
    • The average number of sick days is predicted to be 9.
    • The y-intercept has no practical meaning for this study.
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Knowledge Booster
Correlation, Regression, and Association
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, statistics and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
MATLAB: An Introduction with Applications
MATLAB: An Introduction with Applications
Statistics
ISBN:
9781119256830
Author:
Amos Gilat
Publisher:
John Wiley & Sons Inc
Probability and Statistics for Engineering and th…
Probability and Statistics for Engineering and th…
Statistics
ISBN:
9781305251809
Author:
Jay L. Devore
Publisher:
Cengage Learning
Statistics for The Behavioral Sciences (MindTap C…
Statistics for The Behavioral Sciences (MindTap C…
Statistics
ISBN:
9781305504912
Author:
Frederick J Gravetter, Larry B. Wallnau
Publisher:
Cengage Learning
Elementary Statistics: Picturing the World (7th E…
Elementary Statistics: Picturing the World (7th E…
Statistics
ISBN:
9780134683416
Author:
Ron Larson, Betsy Farber
Publisher:
PEARSON
The Basic Practice of Statistics
The Basic Practice of Statistics
Statistics
ISBN:
9781319042578
Author:
David S. Moore, William I. Notz, Michael A. Fligner
Publisher:
W. H. Freeman
Introduction to the Practice of Statistics
Introduction to the Practice of Statistics
Statistics
ISBN:
9781319013387
Author:
David S. Moore, George P. McCabe, Bruce A. Craig
Publisher:
W. H. Freeman