A student holds a laser that emits light of wavelength 545 nm. The laser beam passes though a pair of slits separated by 0.500 mm, in a glass plate attached to the front of the laser. The beam then falls perpendicularly on a screen, creating an interference pattern on it. The student begins to walk directly toward the screen at 2.00 m/s. The central maximum on the screen is stationary. Find the speed at which the 5th-order maxima changes its position on the screen. Do not use small angle approximation. Modification: Suppose there is a liquid in the space between the slits and the screen. Give such liquid any refractive index you desire (numerical value). Also suppose that the screen has a finite lenght (give another numerical value). Besides calculating the speed at which the 5th-order maxima changes its position on the screen also calculate the initial value of bright fringes according to the initial distance between the screen and the slits plane. Make any necessary assumptions.
The following problem must be solved taking into consideration the modification given below:
A student holds a laser that emits light of wavelength 545 nm. The laser beam passes though a pair of slits separated by 0.500 mm, in a glass plate attached to the front of the laser. The beam then falls perpendicularly on a screen, creating an interference pattern on it. The student begins to walk directly toward the screen at 2.00 m/s. The central maximum on the screen is stationary. Find the speed at which the 5th-order maxima changes its position on the screen. Do not use small angle approximation.
Modification: Suppose there is a liquid in the space between the slits and the screen. Give such liquid any refractive index you desire (numerical value). Also suppose that the screen has a finite lenght (give another numerical value). Besides calculating the speed at which the 5th-order maxima changes its position on the screen also calculate the initial value of bright fringes according to the initial distance between the screen and the slits plane. Make any necessary assumptions.
Step by step
Solved in 2 steps