A string of 1 m length clamped at both ends is plucked in the middle to generate a standing wave. Take the frequency of the first harmonic to be 10 Hz and the amplitude of the oscillations to be 2 cm. Consider the motion to be a simple harmonic one where appropriate. Select below the correct statement on how to proceed to calculate the maximum speed of up and down harmonic motion in the middle of the string. Select one: O a. Write down the corresponding equation for the harmonic motion and take a derivative perpendicular to the string. b. Write down the corresponding equation for the harmonic motion and take a derivative along the string. O c. Write down the corresponding equation for the harmonic motion and take a time derivative.
A string of 1 m length clamped at both ends is plucked in the middle to generate a standing wave. Take the frequency of the first harmonic to be 10 Hz and the amplitude of the oscillations to be 2 cm. Consider the motion to be a simple harmonic one where appropriate. Select below the correct statement on how to proceed to calculate the maximum speed of up and down harmonic motion in the middle of the string. Select one: O a. Write down the corresponding equation for the harmonic motion and take a derivative perpendicular to the string. b. Write down the corresponding equation for the harmonic motion and take a derivative along the string. O c. Write down the corresponding equation for the harmonic motion and take a time derivative.
Related questions
Question
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 2 steps