A rope 200 cm long is stretched horizontally. One end is tied and the other end is vibrated up and down with a frequency (1/4) Hz and an amplitude of 6 cm. As a result of these vibrations the waves propagate and there is a stationary wave with a speed of 10 cm/s. Determine: a. the amplitude of the stationary wave at point P which is 125 cm from the origin of the vibration! b. locate the 2nd belly and 4th knot from the origin of the vibrations
Properties of sound
A sound wave is a mechanical wave (or mechanical vibration) that transit through media such as gas (air), liquid (water), and solid (wood).
Quality Of Sound
A sound or a sound wave is defined as the energy produced due to the vibrations of particles in a medium. When any medium produces a disturbance or vibrations, it causes a movement in the air particles which produces sound waves. Molecules in the air vibrate about a certain average position and create compressions and rarefactions. This is called pitch which is defined as the frequency of sound. The frequency is defined as the number of oscillations in pressure per second.
Categories of Sound Wave
People perceive sound in different ways, like a medico student takes sound as vibration produced by objects reaching the human eardrum. A physicist perceives sound as vibration produced by an object, which produces disturbances in nearby air molecules that travel further. Both of them describe it as vibration generated by an object, the difference is one talks about how it is received and other deals with how it travels and propagates across various mediums.
A rope 200 cm long is stretched horizontally. One end is tied and the other end is vibrated up and down with a frequency (1/4) Hz and an amplitude of 6 cm. As a result of these vibrations the waves propagate and there is a stationary wave with a speed of 10 cm/s. Determine:
a. the amplitude of the stationary wave at point P which is 125 cm from the origin of the vibration!
b. locate the 2nd belly and 4th knot from the origin of the vibrations!
Step by step
Solved in 2 steps with 2 images