A strain gauge mounted at a potentially critical point in a steel part has recorded the stress history shown below during 20 seconds of typical use. Identical parts have been fatigue tested under constant amplitude loading with R = -1 to give an endurance limit of 60 ksi and a fatigue strength of 140 ksi at N = 1000 cycles. The steel used has an ultimate strength of 165 ksi. Estimate the fatigue life of the part under typical use. How much will the fatigue life in problem 3 (above) be reduced if a mean stress of 10 ksi is added to the stress history given?
A strain gauge mounted at a potentially critical point in a steel part has recorded the stress history shown below during 20 seconds of typical use. Identical parts have been fatigue tested under constant amplitude loading with R = -1 to give an endurance limit of 60 ksi and a fatigue strength of 140 ksi at N = 1000 cycles. The steel used has an ultimate strength of 165 ksi. Estimate the fatigue life of the part under typical use. How much will the fatigue life in problem 3 (above) be reduced if a mean stress of 10 ksi is added to the stress history given?
Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
Related questions
Question
A strain gauge mounted at a potentially critical point in a steel part has recorded the stress history shown below during 20 seconds of typical use. Identical parts have been fatigue tested under constant amplitude loading with R = -1 to give an endurance limit of 60 ksi and a fatigue strength of 140 ksi at N = 1000 cycles. The steel used has an ultimate strength of 165 ksi. Estimate the fatigue life of the part under typical use.
How much will the fatigue life in problem 3 (above) be reduced if a mean stress of 10 ksi is added to the stress history given?
![A strain gauge mounted at a potentially critical point in a steel part has recorded the stress history
shown below during 20 seconds of typical use. Identical parts have been fatigue tested under
constant amplitude loading with R = -1 to give an endurance limit of 60 ksi and a fatigue strength
of 140 ksi at N = 1000 cycles. The steel used has an ultimate strength of 165 ksi. Estimate the
fatigue life of the part under typical use.
stress (ksi)
120
100
80
60
40
20
0
-20
-40
-60
-80
-100
-120
How much will the fatigue life in problem 3 be reduced if a mean stress of 10 ksi is added to the
stress history given?](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Fb4ad0587-7468-4ba0-a12a-3a013886b946%2F92753454-21b7-4fc6-99a8-6811d900ca32%2Fkje3fug_processed.jpeg&w=3840&q=75)
Transcribed Image Text:A strain gauge mounted at a potentially critical point in a steel part has recorded the stress history
shown below during 20 seconds of typical use. Identical parts have been fatigue tested under
constant amplitude loading with R = -1 to give an endurance limit of 60 ksi and a fatigue strength
of 140 ksi at N = 1000 cycles. The steel used has an ultimate strength of 165 ksi. Estimate the
fatigue life of the part under typical use.
stress (ksi)
120
100
80
60
40
20
0
-20
-40
-60
-80
-100
-120
How much will the fatigue life in problem 3 be reduced if a mean stress of 10 ksi is added to the
stress history given?
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 3 steps
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Recommended textbooks for you
![Elements Of Electromagnetics](https://www.bartleby.com/isbn_cover_images/9780190698614/9780190698614_smallCoverImage.gif)
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
![Mechanics of Materials (10th Edition)](https://www.bartleby.com/isbn_cover_images/9780134319650/9780134319650_smallCoverImage.gif)
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
![Thermodynamics: An Engineering Approach](https://www.bartleby.com/isbn_cover_images/9781259822674/9781259822674_smallCoverImage.gif)
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
![Elements Of Electromagnetics](https://www.bartleby.com/isbn_cover_images/9780190698614/9780190698614_smallCoverImage.gif)
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
![Mechanics of Materials (10th Edition)](https://www.bartleby.com/isbn_cover_images/9780134319650/9780134319650_smallCoverImage.gif)
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
![Thermodynamics: An Engineering Approach](https://www.bartleby.com/isbn_cover_images/9781259822674/9781259822674_smallCoverImage.gif)
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
![Control Systems Engineering](https://www.bartleby.com/isbn_cover_images/9781118170519/9781118170519_smallCoverImage.gif)
Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY
![Mechanics of Materials (MindTap Course List)](https://www.bartleby.com/isbn_cover_images/9781337093347/9781337093347_smallCoverImage.gif)
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning
![Engineering Mechanics: Statics](https://www.bartleby.com/isbn_cover_images/9781118807330/9781118807330_smallCoverImage.gif)
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY