A steady-state system for producing power consist of a pump, heat exchanger and a turbine. Water at 1.0 bar and 20°℃ (state 1) enters the adiabatic pump and leaves at 10 bar (state 2). The pump draws 110 kW of power, and the mass flow rate of water is 45 kg/s. The water leaving the pump enters a heat exchanger and heated at constant pressure to 400°C (state 3) using exhaust gases (Cp of gases = 1.1 kJ/kgK) that enters at 500°C and exits at 182°C. The steam is adiabatically expanded in a turbine having an isentropic efficiency of 0.71. The turbine exhausts (state 4) to the surroundings at 1.0 bar. What is total rate of entropy production resulting from this power production process? What is thermal efficiency of this power production process?

Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
icon
Related questions
Question
A steady-state system for producing power consist of a pump, heat exchanger and a turbine. Water
at 1.0 bar and 20°C (state 1) enters the adiabatic pump and leaves at 10 bar (state 2). The pump
draws 110 kW of power, and the mass flow rate of water is 45 kg/s. The water leaving the pump
enters a heat exchanger and heated at constant pressure to 400°C (state 3) using exhaust gases (Cp
of gases = 1.1 kJ/kgK) that enters at 500°C and exits at 182°C. The steam is adiabatically expanded
in a turbine having an isentropic efficiency of 0.71. The turbine exhausts (state 4) to the
surroundings at 1.0 bar.
What is total rate of entropy production resulting from this power production process?
What is thermal efficiency of this power production process?
Transcribed Image Text:A steady-state system for producing power consist of a pump, heat exchanger and a turbine. Water at 1.0 bar and 20°C (state 1) enters the adiabatic pump and leaves at 10 bar (state 2). The pump draws 110 kW of power, and the mass flow rate of water is 45 kg/s. The water leaving the pump enters a heat exchanger and heated at constant pressure to 400°C (state 3) using exhaust gases (Cp of gases = 1.1 kJ/kgK) that enters at 500°C and exits at 182°C. The steam is adiabatically expanded in a turbine having an isentropic efficiency of 0.71. The turbine exhausts (state 4) to the surroundings at 1.0 bar. What is total rate of entropy production resulting from this power production process? What is thermal efficiency of this power production process?
Expert Solution
steps

Step by step

Solved in 3 steps

Blurred answer
Similar questions
Recommended textbooks for you
Elements Of Electromagnetics
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
Mechanics of Materials (10th Edition)
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Thermodynamics: An Engineering Approach
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
Control Systems Engineering
Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY
Mechanics of Materials (MindTap Course List)
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning
Engineering Mechanics: Statics
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY