A spherical raindrop of mass 0.0128 g and radius 1.45 mm falls from a cloud that is at a height of 1139 m above the ground. Assume the drag coefficient for the raindrop is 0.60 and the density of the air is 1.3 kg/m3. What is the raindrop's terminal speed? And what would the raindrop's speed just before landing on the ground if therewere no drag force (no air resistance)?

Physics for Scientists and Engineers, Technology Update (No access codes included)
9th Edition
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Raymond A. Serway, John W. Jewett
Chapter6: Circular Motion And Other Applications Of Newton’s Laws
Section: Chapter Questions
Problem 6.38AP: The mass of a roller-coaster car, including its passengers, is 500 kg. Its speed at the bottom of...
icon
Related questions
Topic Video
Question

A spherical raindrop of mass 0.0128 g and radius 1.45 mm falls from a cloud that is at a height of 1139 m above the ground. Assume the drag coefficient for the raindrop is 0.60 and the density of the air is 1.3 kg/m3. What is the raindrop's terminal speed? And what would the raindrop's speed just before landing on the ground if therewere no drag force (no air resistance)?

 

Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps

Blurred answer
Knowledge Booster
First law of motion
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Physics for Scientists and Engineers, Technology …
Physics for Scientists and Engineers, Technology …
Physics
ISBN:
9781305116399
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
Physics for Scientists and Engineers: Foundations…
Physics for Scientists and Engineers: Foundations…
Physics
ISBN:
9781133939146
Author:
Katz, Debora M.
Publisher:
Cengage Learning
Classical Dynamics of Particles and Systems
Classical Dynamics of Particles and Systems
Physics
ISBN:
9780534408961
Author:
Stephen T. Thornton, Jerry B. Marion
Publisher:
Cengage Learning