A small aerospace company is evaluating two alternatives: the purchase of an automatic feed machine and a manual feed machine for a finishing process. The auto-feed machine has an initial cost of $23,000, an estimated salvage value of $4000, and a predicted life of 10 years. One person will operate the machine at a rate of $24 per hour. The expected output is 8 tons per hour. Annual maintenance and operating cost is expected to be $3500. The alternative manual feed machine has a first cost of $8000, no expected salvage value, a 5-year life, and an output of 6 tons per hour. However, three workers will be required at $12 per hour each. The machine will have an annual maintenance and operation cost of $1500. All projects are expected to generate a return of 10% per year. How many tons per year must be finished in order to justify the higher purchase cost of the auto-feed machine?
A small aerospace company is evaluating two alternatives: the purchase of an automatic feed machine and a manual feed machine for a finishing process. The auto-feed machine has an initial cost of $23,000, an estimated salvage value of $4000, and a predicted life of 10 years. One person will operate the machine at a rate of $24 per hour. The expected output is 8 tons per hour. Annual maintenance and operating cost is expected to be $3500. The alternative manual feed machine has a first cost of $8000, no expected salvage value, a 5-year life, and an output of 6 tons per hour. However, three workers will be required at $12 per hour each. The machine will have an annual maintenance and operation cost of $1500. All projects are expected to generate a return of 10% per year. How many tons per year must be finished in order to justify the higher purchase cost of the auto-feed machine?
Trending now
This is a popular solution!
Step by step
Solved in 2 steps with 1 images