A singular value decomposition of a matrix A is as follows: -0.5 0.5 0.5 -0.5] [10 01 0.5 0 TEJ 0.5 -0.5 0 (a) Find the closest (with respect to the Frobenlus norm) matrix of rank 1 to A. A = A1 = 0.5 0.5 0.5 -0.5 0.5 -0.5 0 -0.5 0.5 0.5 (a) Find the Frobenius norm of A - A1. ||A-A1|| = (c) Find the rank of A rank(A) 0090 5 0.8 0.6 -0.6 0.8

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
### Singular Value Decomposition of a Matrix

A singular value decomposition of a matrix \( A \) is as follows:

\[
A = \begin{bmatrix}
-0.5 & 0.5 & 0.5 & -0.5 \\
0.5 & 0.5 & 0.5 & 0.5 \\
0.5 & -0.5 & 0.5 & 0.5 \\
-0.5 & -0.5 & 0.5 & 0.5 \\
\end{bmatrix}
\begin{bmatrix}
10 & 0 \\
0 & 5 \\
0 & 0 \\
0 & 0 \\
\end{bmatrix}
\begin{bmatrix}
0.8 & 0.6 \\
-0.6 & 0.8 \\
\end{bmatrix}
\]

#### (a) Closest Rank-1 Approximation

Find the closest (i.e., with respect to the Frobenius norm) matrix of rank 1 to \( A \):

\[
A_1 = \begin{bmatrix}
 \_\_ & \_\_ & \_\_ & \_\_ \\
 \_\_ & \_\_ & \_\_ & \_\_ \\
 \_\_ & \_\_ & \_\_ & \_\_ \\
 \_\_ & \_\_ & \_\_ & \_\_ \\
\end{bmatrix}
\]

#### (b) Frobenius Norm

Find the Frobenius norm of \( A - A_1 \):

\[
\|A - A_1\|_F = \_\_
\]

#### (c) Rank of A

Find the rank of \( A \):

\[
\text{rank}(A) = \_\_
\]

---

### Explanation of Diagrams

The diagram provided includes three matrices involved in the singular value decomposition of matrix \( A \):

1. **Matrix \( A \)**: A \( 4 \times 4 \) matrix composed of real numbers.
2. **Diagonal Matrix**: A \( 4 \times 2 \) matrix where only the main diagonal elements are non-zero (here, 10 and 5).
3. **Matrix \( V \)**: A \( 2 \times 2 \) orthogonal
Transcribed Image Text:### Singular Value Decomposition of a Matrix A singular value decomposition of a matrix \( A \) is as follows: \[ A = \begin{bmatrix} -0.5 & 0.5 & 0.5 & -0.5 \\ 0.5 & 0.5 & 0.5 & 0.5 \\ 0.5 & -0.5 & 0.5 & 0.5 \\ -0.5 & -0.5 & 0.5 & 0.5 \\ \end{bmatrix} \begin{bmatrix} 10 & 0 \\ 0 & 5 \\ 0 & 0 \\ 0 & 0 \\ \end{bmatrix} \begin{bmatrix} 0.8 & 0.6 \\ -0.6 & 0.8 \\ \end{bmatrix} \] #### (a) Closest Rank-1 Approximation Find the closest (i.e., with respect to the Frobenius norm) matrix of rank 1 to \( A \): \[ A_1 = \begin{bmatrix} \_\_ & \_\_ & \_\_ & \_\_ \\ \_\_ & \_\_ & \_\_ & \_\_ \\ \_\_ & \_\_ & \_\_ & \_\_ \\ \_\_ & \_\_ & \_\_ & \_\_ \\ \end{bmatrix} \] #### (b) Frobenius Norm Find the Frobenius norm of \( A - A_1 \): \[ \|A - A_1\|_F = \_\_ \] #### (c) Rank of A Find the rank of \( A \): \[ \text{rank}(A) = \_\_ \] --- ### Explanation of Diagrams The diagram provided includes three matrices involved in the singular value decomposition of matrix \( A \): 1. **Matrix \( A \)**: A \( 4 \times 4 \) matrix composed of real numbers. 2. **Diagonal Matrix**: A \( 4 \times 2 \) matrix where only the main diagonal elements are non-zero (here, 10 and 5). 3. **Matrix \( V \)**: A \( 2 \times 2 \) orthogonal
Expert Solution
steps

Step by step

Solved in 6 steps with 6 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,