A singular value decomposition of a matrix A is as follows: 0.5 -0.5 -0.5] [5 01 0.5 0.5 0.5 0 5 0.5 0.5 -0.5 0 -0.5 0.5 -0.5 0.5 00 1. Find the closest (with respect to the Frobenius norm) matrix of rank 1 to A. A = Someone A1 = 0.5 0.5 2. Find the Frobenius norm of A - A1. ||A - A1||F janu 0.6 0.87 0.8 0.6

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
100%
### Singular Value Decomposition of a Matrix

A singular value decomposition of a matrix \( A \) is as follows:

\[
A = \begin{bmatrix}
0.5 & 0.5 & -0.5 & -0.5 \\
0.5 & 0.5 & 0.5 & 0.5 \\
-0.5 & 0.5 & 0.5 & -0.5 \\
-0.5 & 0.5 & -0.5 & 0.5
\end{bmatrix}
\begin{bmatrix}
5 & 0 & 0 & 0 \\
0 & 5 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{bmatrix}
\begin{bmatrix}
0.6 & 0.8 \\
-0.8 & 0.6
\end{bmatrix}
\]

### Tasks

1. **Find the Closest Rank 1 Approximation of Matrix \( A \)**

   Find the closest (with respect to the Frobenius norm) matrix of rank 1 to \( A \):

   \[
   A1 = \begin{bmatrix}
   \boxed{\phantom{0}} & \boxed{\phantom{0}} & \boxed{\phantom{0}} & \boxed{\phantom{0}} \\
   \boxed{\phantom{0}} & \boxed{\phantom{0}} & \boxed{\phantom{0}} & \boxed{\phantom{0}} \\
   \boxed{\phantom{0}} & \boxed{\phantom{0}} & \boxed{\phantom{0}} & \boxed{\phantom{0}} \\
   \boxed{\phantom{0}} & \boxed{\phantom{0}} & \boxed{\phantom{0}} & \boxed{\phantom{0}}
   \end{bmatrix}
   \]

2. **Find the Frobenius Norm of \( A - A1 \)**

   Calculate the Frobenius norm of the difference between \( A \) and \( A1 \):

   \[
   \| A - A1 \|_{F} = \boxed{\phantom{0}}
   \]

###
Transcribed Image Text:### Singular Value Decomposition of a Matrix A singular value decomposition of a matrix \( A \) is as follows: \[ A = \begin{bmatrix} 0.5 & 0.5 & -0.5 & -0.5 \\ 0.5 & 0.5 & 0.5 & 0.5 \\ -0.5 & 0.5 & 0.5 & -0.5 \\ -0.5 & 0.5 & -0.5 & 0.5 \end{bmatrix} \begin{bmatrix} 5 & 0 & 0 & 0 \\ 0 & 5 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0.6 & 0.8 \\ -0.8 & 0.6 \end{bmatrix} \] ### Tasks 1. **Find the Closest Rank 1 Approximation of Matrix \( A \)** Find the closest (with respect to the Frobenius norm) matrix of rank 1 to \( A \): \[ A1 = \begin{bmatrix} \boxed{\phantom{0}} & \boxed{\phantom{0}} & \boxed{\phantom{0}} & \boxed{\phantom{0}} \\ \boxed{\phantom{0}} & \boxed{\phantom{0}} & \boxed{\phantom{0}} & \boxed{\phantom{0}} \\ \boxed{\phantom{0}} & \boxed{\phantom{0}} & \boxed{\phantom{0}} & \boxed{\phantom{0}} \\ \boxed{\phantom{0}} & \boxed{\phantom{0}} & \boxed{\phantom{0}} & \boxed{\phantom{0}} \end{bmatrix} \] 2. **Find the Frobenius Norm of \( A - A1 \)** Calculate the Frobenius norm of the difference between \( A \) and \( A1 \): \[ \| A - A1 \|_{F} = \boxed{\phantom{0}} \] ###
Expert Solution
steps

Step by step

Solved in 8 steps with 28 images

Blurred answer
Similar questions
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,