A single-effect falling-film evaporator is used to concentrate orange juice from 14% to 45% solids. The evaporator utilizes a mechanical refrigeration cycle using ammonia as a refrigerant for heating and for condensing the vapors. The refrige-ration cycle is operated at a high-side pressure of 200 psia (1.379 MPa) and a low-side pressure of 50 psia (344.7 kPa). The evaporator is operated at a vapor temperature of 90oF (32.2oC). Feed enters at 70oF (21.1oC). The ratio of insoluble to soluble solids in the juice is 0.09, and the soluble solids consist of glucose and sucrose in 70:30 ratio. Consider the ΔT as the log mean ΔT between the liquid refrigerant temperature and the feed temperature at one point and the hot refri-gerant gas temperature and the concentrated liquid boiling temperature at the other point. The evaporator has a heat transfer surface area of 100 ft2 (9.29 m2), and an overall heat transfer coefficient of 300 BTU (h.ft2.oF) or 1073 W/(m2.K) may be expected. Calculate: Calculate: The evaporator capacity in weight of feed per hour The tons of refrigeration capacity required for the refrigeration unit based in the heating requirement for the evaporator. The additional cooling required for condensation of vapors if the refrigeration unit is designed to provide all of the heating requirements for evaporation.
A single-effect falling-film evaporator is used to concentrate orange juice from 14% to 45% solids. The evaporator utilizes a mechanical refrigeration cycle using ammonia as a refrigerant for heating and for condensing the vapors. The refrige-ration cycle is operated at a high-side pressure of 200 psia (1.379 MPa) and a low-side pressure of 50 psia (344.7 kPa). The evaporator is operated at a vapor temperature of 90oF (32.2oC). Feed enters at 70oF (21.1oC). The ratio of insoluble to soluble solids in the juice is 0.09, and the soluble solids consist of glucose and sucrose in 70:30 ratio. Consider the ΔT as the log mean ΔT between the liquid refrigerant temperature and the feed temperature at one point and the hot refri-gerant gas temperature and the concentrated liquid boiling temperature at the other point. The evaporator has a heat transfer surface area of 100 ft2 (9.29 m2), and an overall heat transfer coefficient of 300 BTU (h.ft2.oF) or 1073 W/(m2.K) may be expected. Calculate: Calculate: The evaporator capacity in weight of feed per hour The tons of refrigeration capacity required for the refrigeration unit based in the heating requirement for the evaporator. The additional cooling required for condensation of vapors if the refrigeration unit is designed to provide all of the heating requirements for evaporation.
Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
Related questions
Question
- A single-effect falling-film evaporator is used to concentrate orange juice from 14% to 45% solids. The evaporator utilizes a
mechanical refrigeration cycle using ammonia as a refrigerant for heating and for condensing the vapors. The refrige-ration cycle is operated at a high-side pressure of 200 psia (1.379 MPa) and a low-side pressure of 50 psia (344.7 kPa). The evaporator is operated at a vapor temperature of 90oF (32.2oC). Feed enters at 70oF (21.1oC). The ratio of insoluble to soluble solids in the juice is 0.09, and the soluble solids consist of glucose and sucrose in 70:30 ratio. Consider the ΔT as the log mean ΔT between the liquid refrigerant temperature and the feed temperature at one point and the hot refri-gerant gas temperature and the concentrated liquid boiling temperature at the other point. The evaporator has a heat transfer surface area of 100 ft2 (9.29 m2), and an overall heat transfer coefficient of 300 BTU (h.ft2.oF) or 1073 W/(m2.K) may be expected. Calculate:
Calculate:
- The evaporator capacity in weight of feed per hour
- The tons of refrigeration capacity required for the refrigeration unit based in the heating requirement for the evaporator.
- The additional cooling required for condensation of vapors if the refrigeration unit is designed to provide all of the heating requirements for evaporation.
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 5 steps with 4 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Recommended textbooks for you
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY