A simple ideal Rankine cycle which uses water as the working kPa. The boiler produces a 10 MPa superheated steam at 450°C. The isentropic efficiency of the pump and turbine are 100% and 90% respectively. Calculate, (a) the heat supplied in the boiler. (b) the work produced by the turbine. (c) the quality of steam at turbine exit (d) the thermal efficiency of this cycle.

Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
icon
Related questions
Question
Question 1
A simple ideal Rankine cycle which uses water as the working fluid operates its condenser at 30
kPa. The boiler produces a 10 MPa superheated steam at 450°C. The isentropic efficiency of the
pump and turbine are 100% and 90% respectively. Calculate,
(a) the heat supplied in the boiler.
(b) the work produced by the turbine.
(c) the quality of steam at turbine exit
(d) the thermal efficiency of this cycle.
Pump
0-1
Boiler
10 MPa
450 deg C
0
Turbine
Condenser
O
30 kPa
Transcribed Image Text:Question 1 A simple ideal Rankine cycle which uses water as the working fluid operates its condenser at 30 kPa. The boiler produces a 10 MPa superheated steam at 450°C. The isentropic efficiency of the pump and turbine are 100% and 90% respectively. Calculate, (a) the heat supplied in the boiler. (b) the work produced by the turbine. (c) the quality of steam at turbine exit (d) the thermal efficiency of this cycle. Pump 0-1 Boiler 10 MPa 450 deg C 0 Turbine Condenser O 30 kPa
Expert Solution
steps

Step by step

Solved in 4 steps with 3 images

Blurred answer
Knowledge Booster
Power Plant Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
Elements Of Electromagnetics
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
Mechanics of Materials (10th Edition)
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Thermodynamics: An Engineering Approach
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
Control Systems Engineering
Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY
Mechanics of Materials (MindTap Course List)
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning
Engineering Mechanics: Statics
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY