A simple atmospheric distillation tower as shown in the Figure below have a capacity of 1200 bbl/day. Steam vapor with flow rate of 567 Ib/hr at Temp. 535 F and (Cp=0.5) is supported blow the flash zone. Given the information in the Table below Steam + Gasoline 286 Latent Mol. Ib/hr Ср heat wt Reflux Gasoline 3415 0.56 120 110 Naphtha 754 0.55 113 155 Naphta 335 F Kerosene 2765 0.57 100 185 Kerosene 420 F Gas Oil 1530 0.59 90 240 Temp. Reduced Crude oil 600 F Gas oil 510 F 5610 0.72 576 F Crude Steam 535 F Loss 96 Crude Oil 14170 Reduced crude 510 F 1. Make a heat balance to determine the amount of heat that must be removed to keep the tower in thermal balance? 2. How many pounds of reflux are required if cold reflux at 80 F is used? 3. Calculate the correct temperature at the top of the tower using Claussius - Clapeyron eq. if the total pressure at top of the tower = 780 mmHg and the dew point of 100% Gasoline at 760 mmHg on the EFV curve is 296 F.?
A simple atmospheric distillation tower as shown in the Figure below have a capacity of 1200 bbl/day. Steam vapor with flow rate of 567 Ib/hr at Temp. 535 F and (Cp=0.5) is supported blow the flash zone. Given the information in the Table below Steam + Gasoline 286 Latent Mol. Ib/hr Ср heat wt Reflux Gasoline 3415 0.56 120 110 Naphtha 754 0.55 113 155 Naphta 335 F Kerosene 2765 0.57 100 185 Kerosene 420 F Gas Oil 1530 0.59 90 240 Temp. Reduced Crude oil 600 F Gas oil 510 F 5610 0.72 576 F Crude Steam 535 F Loss 96 Crude Oil 14170 Reduced crude 510 F 1. Make a heat balance to determine the amount of heat that must be removed to keep the tower in thermal balance? 2. How many pounds of reflux are required if cold reflux at 80 F is used? 3. Calculate the correct temperature at the top of the tower using Claussius - Clapeyron eq. if the total pressure at top of the tower = 780 mmHg and the dew point of 100% Gasoline at 760 mmHg on the EFV curve is 296 F.?
Introduction to Chemical Engineering Thermodynamics
8th Edition
ISBN:9781259696527
Author:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Publisher:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Chapter1: Introduction
Section: Chapter Questions
Problem 1.1P
Related questions
Question
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 4 steps with 29 images
Recommended textbooks for you
Introduction to Chemical Engineering Thermodynami…
Chemical Engineering
ISBN:
9781259696527
Author:
J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Publisher:
McGraw-Hill Education
Elementary Principles of Chemical Processes, Bind…
Chemical Engineering
ISBN:
9781118431221
Author:
Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:
WILEY
Elements of Chemical Reaction Engineering (5th Ed…
Chemical Engineering
ISBN:
9780133887518
Author:
H. Scott Fogler
Publisher:
Prentice Hall
Introduction to Chemical Engineering Thermodynami…
Chemical Engineering
ISBN:
9781259696527
Author:
J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Publisher:
McGraw-Hill Education
Elementary Principles of Chemical Processes, Bind…
Chemical Engineering
ISBN:
9781118431221
Author:
Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:
WILEY
Elements of Chemical Reaction Engineering (5th Ed…
Chemical Engineering
ISBN:
9780133887518
Author:
H. Scott Fogler
Publisher:
Prentice Hall
Industrial Plastics: Theory and Applications
Chemical Engineering
ISBN:
9781285061238
Author:
Lokensgard, Erik
Publisher:
Delmar Cengage Learning
Unit Operations of Chemical Engineering
Chemical Engineering
ISBN:
9780072848236
Author:
Warren McCabe, Julian C. Smith, Peter Harriott
Publisher:
McGraw-Hill Companies, The