a sample of 15 one-pound jars of coffee of Brand I showed that the mean amount of caffeine in these jars is 80 milligrams per jar with a standard deviation of 5 milligrams. Another sample of 12 one-pound coffee jars of Brand II gave a mean amount of caffeine equal to 77 milligrams per jar with a standard deviation of 6 milligrams. Construct a 95% confidence interval for the difference between the mean amounts of caffeine in one-pound coffee jars of these two brands. Assume that the two populations are normally distributed and that the standard deviations of the two populations are not equal.

A First Course in Probability (10th Edition)
10th Edition
ISBN:9780134753119
Author:Sheldon Ross
Publisher:Sheldon Ross
Chapter1: Combinatorial Analysis
Section: Chapter Questions
Problem 1.1P: a. How many different 7-place license plates are possible if the first 2 places are for letters and...
icon
Related questions
Question
a sample of 15 one-pound jars of coffee of
Brand I showed that the mean amount of caffeine in these jars is 80 milligrams per jar with a
standard deviation of 5 milligrams. Another sample of 12 one-pound coffee jars of Brand II
gave a mean amount of caffeine equal to 77 milligrams per jar with a standard deviation of
6 milligrams. Construct a 95% confidence interval for the difference between the mean amounts
of caffeine in one-pound coffee jars of these two brands. Assume that the two populations are
normally distributed and that the standard deviations of the two populations are not equal.
Transcribed Image Text:a sample of 15 one-pound jars of coffee of Brand I showed that the mean amount of caffeine in these jars is 80 milligrams per jar with a standard deviation of 5 milligrams. Another sample of 12 one-pound coffee jars of Brand II gave a mean amount of caffeine equal to 77 milligrams per jar with a standard deviation of 6 milligrams. Construct a 95% confidence interval for the difference between the mean amounts of caffeine in one-pound coffee jars of these two brands. Assume that the two populations are normally distributed and that the standard deviations of the two populations are not equal.
Expert Solution
steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Similar questions
Recommended textbooks for you
A First Course in Probability (10th Edition)
A First Course in Probability (10th Edition)
Probability
ISBN:
9780134753119
Author:
Sheldon Ross
Publisher:
PEARSON
A First Course in Probability
A First Course in Probability
Probability
ISBN:
9780321794772
Author:
Sheldon Ross
Publisher:
PEARSON