A robot is going to attempt the same task 100 times. Each time it tries, it will either succeed or fail to succeed in completing the task. Say the robot does not learn from its tries, so each attempt at the task is independent of the others. On a given attempt, the probability of the robot succeeding is 0.85. Let X be the random variable of the number of times this robot is able to succeed in completing the task. part 1. What is the probability that the robot succeeds less than or equal to 80 times? (it is only for part a; no need to show work) a. Use the compliment rule to reduce the number of operations needed in part 1. Find another way to compute the needed probability. b. Now say two robots are going to attempt the same task. The robots operate independently from one another. What is the probability that both robots succeed less than or equal to 80 times out of 100? c. Now say the single robot begins to learn the more it tries. That is to say, it gets better at succeeding at the task the more it tries. Can the distribution from part a. still be used? In a sentence or two explain why or why not.

MATLAB: An Introduction with Applications
6th Edition
ISBN:9781119256830
Author:Amos Gilat
Publisher:Amos Gilat
Chapter1: Starting With Matlab
Section: Chapter Questions
Problem 1P
icon
Related questions
Question

3. A robot is going to attempt the same task 100 times. Each time it tries, it will either succeed or fail to succeed in completing the task. Say the robot does not learn from its tries, so each attempt at the task is independent of the others. On a given attempt, the probability of the robot succeeding is 0.85. Let X be the random variable of the number of times this robot is able to succeed in completing the task.

part 1. What is the probability that the robot succeeds less than or equal to 80 times? (it is only for part a; no need to show work)

a. Use the compliment rule to reduce the number of operations needed in part 1. Find another way to compute the needed probability.

b. Now say two robots are going to attempt the same task. The robots operate independently from one another. What is the probability that both robots succeed less than or equal to 80 times out of 100?

c. Now say the single robot begins to learn the more it tries. That is to say, it gets better at succeeding at the task the more it tries. Can the distribution from part a. still be used? In a sentence or two explain why or why not.

Expert Solution
steps

Step by step

Solved in 5 steps with 4 images

Blurred answer
Recommended textbooks for you
MATLAB: An Introduction with Applications
MATLAB: An Introduction with Applications
Statistics
ISBN:
9781119256830
Author:
Amos Gilat
Publisher:
John Wiley & Sons Inc
Probability and Statistics for Engineering and th…
Probability and Statistics for Engineering and th…
Statistics
ISBN:
9781305251809
Author:
Jay L. Devore
Publisher:
Cengage Learning
Statistics for The Behavioral Sciences (MindTap C…
Statistics for The Behavioral Sciences (MindTap C…
Statistics
ISBN:
9781305504912
Author:
Frederick J Gravetter, Larry B. Wallnau
Publisher:
Cengage Learning
Elementary Statistics: Picturing the World (7th E…
Elementary Statistics: Picturing the World (7th E…
Statistics
ISBN:
9780134683416
Author:
Ron Larson, Betsy Farber
Publisher:
PEARSON
The Basic Practice of Statistics
The Basic Practice of Statistics
Statistics
ISBN:
9781319042578
Author:
David S. Moore, William I. Notz, Michael A. Fligner
Publisher:
W. H. Freeman
Introduction to the Practice of Statistics
Introduction to the Practice of Statistics
Statistics
ISBN:
9781319013387
Author:
David S. Moore, George P. McCabe, Bruce A. Craig
Publisher:
W. H. Freeman