A research team is working on a project to study the time (in seconds) for high school male runners to finish a 400-meter race. Jimmy, a junior researcher in the team, has randomly selected a sample of 25 male runners from a high school and the time (in seconds) for each of them to complete a 400-meter race was recorded. The sample mean running time was 53 seconds. It is assumed that the running time in a 400-meter race follows a normal distribution with a population standard deviation of 5.5 seconds. (a) Give a point estimate of the population mean running time for a 400-meter race. (b) Calculate the sampling error at 95% confidence level. (c) Construct a 95% confidence interval estimate of the population mean running time for a 400-meter race.
A research team is working on a project to study the time (in seconds) for high school male runners to finish a 400-meter race. Jimmy, a junior researcher in the team, has randomly selected a sample of 25 male runners from a high school and the time (in seconds) for each of them to complete a 400-meter race was recorded. The sample mean running time was 53 seconds. It is assumed that the running time in a 400-meter race follows a normal distribution with a population standard deviation of 5.5 seconds. (a) Give a point estimate of the population mean running time for a 400-meter race. (b) Calculate the sampling error at 95% confidence level. (c) Construct a 95% confidence interval estimate of the population mean running time for a 400-meter race.
A research team is working on a project to study the time (in seconds) for high school male runners to finish a 400-meter race. Jimmy, a junior researcher in the team, has randomly selected a sample of 25 male runners from a high school and the time (in seconds) for each of them to complete a 400-meter race was recorded. The sample mean running time was 53 seconds. It is assumed that the running time in a 400-meter race follows a normal distribution with a population standard deviation of 5.5 seconds. (a) Give a point estimate of the population mean running time for a 400-meter race. (b) Calculate the sampling error at 95% confidence level. (c) Construct a 95% confidence interval estimate of the population mean running time for a 400-meter race.
A research team is working on a project to study the time (in seconds) for high school male runners to finish a 400-meter race. Jimmy, a junior researcher in the team, has randomly selected a sample of 25 male runners from a high school and the time (in seconds) for each of them to complete a 400-meter race was recorded. The sample mean running time was 53 seconds. It is assumed that the running time in a 400-meter race follows a normal distribution with a population standard deviation of 5.5 seconds. (a) Give a point estimate of the population mean running time for a 400-meter race. (b) Calculate the sampling error at 95% confidence level. (c) Construct a 95% confidence interval estimate of the population mean running time for a 400-meter race.
Definition Definition Method in statistics by which an observation’s uncertainty can be quantified. The main use of interval estimating is for describing a range that is made by transforming a point estimate by determining the range of values, or interval within which the population parameter is likely to fall. This range helps in measuring its precision.
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.