A remote-controlled car is moving in a vacant parking lot. The velocity of the car as a function of time is given by v⃗ =[ 5.00m/s − (0.0180m/s3) t2 ] i + [ 2.00m/s + (0.550m/s2) t ] j . a. What is the magnitude of the velocity of the car at t = 8.00 s? b. What is the direction (in degrees counterclockwise from + x-axis) of the velocity of the car at t = 8.00 s? c. What is the magnitude of the acceleration of the car at t = 8.00 s? d. What is the direction (in degrees counterclockwise from + x-axis) of the acceleration of the car at t = 8.00 s?
Displacement, Velocity and Acceleration
In classical mechanics, kinematics deals with the motion of a particle. It deals only with the position, velocity, acceleration, and displacement of a particle. It has no concern about the source of motion.
Linear Displacement
The term "displacement" refers to when something shifts away from its original "location," and "linear" refers to a straight line. As a result, “Linear Displacement” can be described as the movement of an object in a straight line along a single axis, for example, from side to side or up and down. Non-contact sensors such as LVDTs and other linear location sensors can calculate linear displacement. Non-contact sensors such as LVDTs and other linear location sensors can calculate linear displacement. Linear displacement is usually measured in millimeters or inches and may be positive or negative.
A remote-controlled car is moving in a vacant parking lot. The velocity of the car as a function of time is given by v⃗ =[ 5.00m/s − (0.0180m/s3) t2 ] i + [ 2.00m/s + (0.550m/s2) t ] j .
a. What is the magnitude of the velocity of the car at t = 8.00 s?
b. What is the direction (in degrees counterclockwise from + x-axis) of the velocity of the car at t = 8.00 s?
c. What is the magnitude of the acceleration of the car at t = 8.00 s?
d. What is the direction (in degrees counterclockwise from + x-axis) of the acceleration of the car at t = 8.00 s?

Trending now
This is a popular solution!
Step by step
Solved in 2 steps with 2 images









