A refrigerator operates on the ideal vapor-compression refrigeration cycle and use R-134a as the working fluid. The condenser operates 1.4 MPa and the evaporator at 0.140 MPa. (a) Show the cycle on a T-s diagram, indicating the enthalpies at the end of each process, with respect to saturation lines. For a mass flow rate of 0.100 kg/s, determine (b) the net power input to the compressor, in kW, (c) the heat rejection to the environment, in kW, (d) the heat rejection from the cold refrigerated space to the evaporator, in kW, and (e) the coefficient of performance.
A refrigerator operates on the ideal vapor-compression refrigeration cycle and use R-134a as the working fluid. The condenser operates 1.4 MPa and the evaporator at 0.140 MPa. (a) Show the cycle on a T-s diagram, indicating the enthalpies at the end of each process, with respect to saturation lines. For a mass flow rate of 0.100 kg/s, determine (b) the net power input to the compressor, in kW, (c) the heat rejection to the environment, in kW, (d) the heat rejection from the cold refrigerated space to the evaporator, in kW, and (e) the coefficient of performance.
Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
Related questions
Question
Refrigeration Cycle: A refrigerator operates on the ideal vapor-compression refrigeration cycle and use R-134a as the working fluid. The condenser operates 1.4 MPa and the evaporator at 0.140 MPa. (a) Show the cycle on a T-s diagram, indicating the enthalpies at the end of each process, with respect to saturation lines. For a mass flow rate of 0.100 kg/s, determine (b) the net power input to the compressor, in kW, (c) the heat rejection to the environment, in kW, (d) the heat rejection from the cold refrigerated space to the evaporator, in kW, and (e) the coefficient of performance.
use the formula in the picture
![Formula and Property Tables:
QL = m(h1 – h4)
Win = m(h2 – h)
QH = m(h2 – h3)
h1 - h4
COP =
h2 – h
СОР
in
Saturated R134a - Pressure Table
P, kPa
Tat °C
Specific Enthalpy
Specific Entropy
he, kJ/kg
h kJ/kg
h kJ/kg
Sp. kJ/kg K
Stg. kJ/kg.K
$. kJ/kg K
120
- 22.32
22.49
214.48
236.97
0.09275
0.85503
0.94779
140
- 18.77
27.08
212.08
239.16
0.11087
0.83368
0.94456
160
- 15.60
31.21
209.90
241.11
0.12693
081496
0.94190
1200
46.29
117.77
156.10
273.87
0.42441
0.48863
0.91303
1400
52.40
127.77
148.90
276.12
0.45315
0.45734
0.91050
1600
57.88
135.93
141.93
277.86
0.47911
0.42873
0.90784
Superheated R134a
P= 0.140 MPa, (Tat=-18.77°C)
Superheated RI34a
P= 1.40 MPa, (Tat = 57.88°C)
T,
u
h
T,
u
h
°C
n/kg
kJ/kg
kJ/kg
kJ/kg.K
°C
m/kg
kJ/kg
kJ/kg
kJ/kg.K
Sat
0.14014
215.54
239.16
0.9446
Sat
0.01212
258.47
277.86
0.9078
- 20
60
0.01237
260.89
280.69
0.9163
- 10
0.14605
225.91
246.36
0.9724
70
0.01343
271.76
293.25
0.9535
0.
0.15263
233.23
254.60
1.0031
80
0.01436
282.09
305.07
0.9875](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Ffbc9ec30-56b9-449f-a27a-b660718300d8%2F776566cd-c2cf-4fbe-8937-e06a1729fda2%2F0j1767_processed.jpeg&w=3840&q=75)
Transcribed Image Text:Formula and Property Tables:
QL = m(h1 – h4)
Win = m(h2 – h)
QH = m(h2 – h3)
h1 - h4
COP =
h2 – h
СОР
in
Saturated R134a - Pressure Table
P, kPa
Tat °C
Specific Enthalpy
Specific Entropy
he, kJ/kg
h kJ/kg
h kJ/kg
Sp. kJ/kg K
Stg. kJ/kg.K
$. kJ/kg K
120
- 22.32
22.49
214.48
236.97
0.09275
0.85503
0.94779
140
- 18.77
27.08
212.08
239.16
0.11087
0.83368
0.94456
160
- 15.60
31.21
209.90
241.11
0.12693
081496
0.94190
1200
46.29
117.77
156.10
273.87
0.42441
0.48863
0.91303
1400
52.40
127.77
148.90
276.12
0.45315
0.45734
0.91050
1600
57.88
135.93
141.93
277.86
0.47911
0.42873
0.90784
Superheated R134a
P= 0.140 MPa, (Tat=-18.77°C)
Superheated RI34a
P= 1.40 MPa, (Tat = 57.88°C)
T,
u
h
T,
u
h
°C
n/kg
kJ/kg
kJ/kg
kJ/kg.K
°C
m/kg
kJ/kg
kJ/kg
kJ/kg.K
Sat
0.14014
215.54
239.16
0.9446
Sat
0.01212
258.47
277.86
0.9078
- 20
60
0.01237
260.89
280.69
0.9163
- 10
0.14605
225.91
246.36
0.9724
70
0.01343
271.76
293.25
0.9535
0.
0.15263
233.23
254.60
1.0031
80
0.01436
282.09
305.07
0.9875
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 3 steps with 2 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Recommended textbooks for you
![Elements Of Electromagnetics](https://www.bartleby.com/isbn_cover_images/9780190698614/9780190698614_smallCoverImage.gif)
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
![Mechanics of Materials (10th Edition)](https://www.bartleby.com/isbn_cover_images/9780134319650/9780134319650_smallCoverImage.gif)
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
![Thermodynamics: An Engineering Approach](https://www.bartleby.com/isbn_cover_images/9781259822674/9781259822674_smallCoverImage.gif)
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
![Elements Of Electromagnetics](https://www.bartleby.com/isbn_cover_images/9780190698614/9780190698614_smallCoverImage.gif)
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
![Mechanics of Materials (10th Edition)](https://www.bartleby.com/isbn_cover_images/9780134319650/9780134319650_smallCoverImage.gif)
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
![Thermodynamics: An Engineering Approach](https://www.bartleby.com/isbn_cover_images/9781259822674/9781259822674_smallCoverImage.gif)
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
![Control Systems Engineering](https://www.bartleby.com/isbn_cover_images/9781118170519/9781118170519_smallCoverImage.gif)
Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY
![Mechanics of Materials (MindTap Course List)](https://www.bartleby.com/isbn_cover_images/9781337093347/9781337093347_smallCoverImage.gif)
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning
![Engineering Mechanics: Statics](https://www.bartleby.com/isbn_cover_images/9781118807330/9781118807330_smallCoverImage.gif)
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY