A real 3 x 3 matrix H has the eigenpairs (• ()) (-() (- C) 1– i2 1+ i2 2 – i2 2+ i 2+ i2 i6 , -i6, 0, 1 2 – i

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

(a)  Give an invertible matrix V and a diagonal matrix D such that H =VDV-1.
(You do not have to compute either V-1 or H!)
(b) Give a real fundamental matrix for the system x'= Hx.

A real \(3 \times 3\) matrix \(\mathbf{H}\) has the eigenpairs

\[
\left( 0, \begin{pmatrix} 2 \\ 1 \\ -2 \end{pmatrix} \right), \quad \left( i6, \begin{pmatrix} 1 - i2 \\ 2 + i2 \\ 2 - i \end{pmatrix} \right), \quad \left( -i6, \begin{pmatrix} 1 + i2 \\ 2 - i2 \\ 2 + i \end{pmatrix} \right).
\]

### Explanation:

- **Eigenpairs**: Each eigenpair consists of an eigenvalue and its corresponding eigenvector.
  
1. **First Eigenpair:**
   - Eigenvalue: \(0\)
   - Eigenvector: \(\begin{pmatrix} 2 \\ 1 \\ -2 \end{pmatrix}\)

2. **Second Eigenpair:**
   - Eigenvalue: \(i6\) (complex number)
   - Eigenvector: \(\begin{pmatrix} 1 - i2 \\ 2 + i2 \\ 2 - i \end{pmatrix}\)

3. **Third Eigenpair:**
   - Eigenvalue: \(-i6\) (complex number)
   - Eigenvector: \(\begin{pmatrix} 1 + i2 \\ 2 - i2 \\ 2 + i \end{pmatrix}\)

These eigenpairs can help in understanding the behavior of the matrix \(\mathbf{H}\), such as diagonalization or transformations it represents.
Transcribed Image Text:A real \(3 \times 3\) matrix \(\mathbf{H}\) has the eigenpairs \[ \left( 0, \begin{pmatrix} 2 \\ 1 \\ -2 \end{pmatrix} \right), \quad \left( i6, \begin{pmatrix} 1 - i2 \\ 2 + i2 \\ 2 - i \end{pmatrix} \right), \quad \left( -i6, \begin{pmatrix} 1 + i2 \\ 2 - i2 \\ 2 + i \end{pmatrix} \right). \] ### Explanation: - **Eigenpairs**: Each eigenpair consists of an eigenvalue and its corresponding eigenvector. 1. **First Eigenpair:** - Eigenvalue: \(0\) - Eigenvector: \(\begin{pmatrix} 2 \\ 1 \\ -2 \end{pmatrix}\) 2. **Second Eigenpair:** - Eigenvalue: \(i6\) (complex number) - Eigenvector: \(\begin{pmatrix} 1 - i2 \\ 2 + i2 \\ 2 - i \end{pmatrix}\) 3. **Third Eigenpair:** - Eigenvalue: \(-i6\) (complex number) - Eigenvector: \(\begin{pmatrix} 1 + i2 \\ 2 - i2 \\ 2 + i \end{pmatrix}\) These eigenpairs can help in understanding the behavior of the matrix \(\mathbf{H}\), such as diagonalization or transformations it represents.
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 5 steps with 5 images

Blurred answer
Knowledge Booster
Inverse of a Matrix
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,