A random sample of n1 = 14 winter days in Denver gave a sample mean pollution index x1 = 43. Previous studies show that σ1 = 19. For Englewood (a suburb of Denver), a random sample of n2 = 12 winter days gave a sample mean pollution index of x2 = 37. Previous studies show that σ2 = 13. Assume the pollution index is normally distributed in both Englewood and Denver. (a) State the null and alternate hypotheses. H0: μ1 = μ2; H1: μ1 > μ2 H0: μ1 < μ2; H1: μ1 = μ2     H0: μ1 = μ2; H1: μ1 < μ2 H0: μ1 = μ2; H1: μ1 ≠ μ2 (b) What sampling distribution will you use? What assumptions are you making? The Student's t. We assume that both population distributions are approximately normal with known standard deviations. The standard normal. We assume that both population distributions are approximately normal with unknown standard deviations.     The standard normal. We assume that both population distributions are approximately normal with known standard deviations. The Student's t. We assume that both population distributions are approximately normal with unknown standard deviations. (c) What is the value of the sample test statistic? Compute the corresponding z or t value as appropriate. (Test the difference μ1 − μ2. Round your answer to two decimal places.)

MATLAB: An Introduction with Applications
6th Edition
ISBN:9781119256830
Author:Amos Gilat
Publisher:Amos Gilat
Chapter1: Starting With Matlab
Section: Chapter Questions
Problem 1P
icon
Related questions
icon
Concept explainers
Question

A random sample of n1 = 14 winter days in Denver gave a sample mean pollution index x1 = 43. Previous studies show that σ1 = 19. For Englewood (a suburb of Denver), a random sample of n2 = 12 winter days gave a sample mean pollution index of x2 = 37. Previous studies show that σ2 = 13. Assume the pollution index is normally distributed in both Englewood and Denver.

(a) State the null and alternate hypotheses.
H0: μ1 = μ2; H1: μ1 > μ2
H0: μ1 < μ2; H1: μ1 = μ2    
H0: μ1 = μ2; H1: μ1 < μ2
H0: μ1 = μ2; H1: μ1 ≠ μ2

(b) What sampling distribution will you use? What assumptions are you making?
The Student's t. We assume that both population distributions are approximately normal with known standard deviations.
The standard normal. We assume that both population distributions are approximately normal with unknown standard deviations.    
The standard normal. We assume that both population distributions are approximately normal with known standard deviations.
The Student's t. We assume that both population distributions are approximately normal with unknown standard deviations.

(c) What is the value of the sample test statistic? Compute the corresponding z or t value as appropriate. (Test the difference μ1 − μ2. Round your answer to two decimal places.)

(d) Find (or estimate) the P-value. (Round your answer to four decimal places.)

(e) Based on your answers in parts (i)−(iii), will you reject or fail to reject the null hypothesis? Are the data statistically significant at level α?
At the α = 0.01 level, we fail to reject the null hypothesis and conclude the data are not statistically significant.
At the α = 0.01 level, we reject the null hypothesis and conclude the data are statistically significant.    
At the α = 0.01 level, we fail to reject the null hypothesis and conclude the data are statistically significant.
At the α = 0.01 level, we reject the null hypothesis and conclude the data are not statistically significant.

(f) Interpret your conclusion in the context of the application.
Reject the null hypothesis, there is insufficient evidence that there is a difference in mean pollution index for Englewood and Denver.
Reject the null hypothesis, there is sufficient evidence that there is a difference in mean pollution index for Englewood and Denver.    
Fail to reject the null hypothesis, there is insufficient evidence that there is a difference in mean pollution index for Englewood and Denver.
Fail to reject the null hypothesis, there is sufficient evidence that there is a difference in mean pollution index for Englewood and Denver.
 
(g) Find a 99% confidence interval for
μ1 − μ2.
(Round your answers to two decimal places.)
lower limit      
upper limit      

(h) Explain the meaning of the confidence interval in the context of the problem.
Because the interval contains only positive numbers, this indicates that at the 99% confidence level, the mean population pollution index for Englewood is greater than that of Denver.
Because the interval contains both positive and negative numbers, this indicates that at the 99% confidence level, we can not say that the mean population pollution index for Englewood is different than that of Denver.    
Because the interval contains both positive and negative numbers, this indicates that at the 99% confidence level, the mean population pollution index for Englewood is greater than that of Denver.
Because the interval contains only negative numbers, this indicates that at the 99% confidence level, the mean population pollution index for Englewood is less than that of Denver.
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Knowledge Booster
Conditional Probability, Decision Trees, and Bayes' Theorem
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, statistics and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
MATLAB: An Introduction with Applications
MATLAB: An Introduction with Applications
Statistics
ISBN:
9781119256830
Author:
Amos Gilat
Publisher:
John Wiley & Sons Inc
Probability and Statistics for Engineering and th…
Probability and Statistics for Engineering and th…
Statistics
ISBN:
9781305251809
Author:
Jay L. Devore
Publisher:
Cengage Learning
Statistics for The Behavioral Sciences (MindTap C…
Statistics for The Behavioral Sciences (MindTap C…
Statistics
ISBN:
9781305504912
Author:
Frederick J Gravetter, Larry B. Wallnau
Publisher:
Cengage Learning
Elementary Statistics: Picturing the World (7th E…
Elementary Statistics: Picturing the World (7th E…
Statistics
ISBN:
9780134683416
Author:
Ron Larson, Betsy Farber
Publisher:
PEARSON
The Basic Practice of Statistics
The Basic Practice of Statistics
Statistics
ISBN:
9781319042578
Author:
David S. Moore, William I. Notz, Michael A. Fligner
Publisher:
W. H. Freeman
Introduction to the Practice of Statistics
Introduction to the Practice of Statistics
Statistics
ISBN:
9781319013387
Author:
David S. Moore, George P. McCabe, Bruce A. Craig
Publisher:
W. H. Freeman