A pump is used to circulate hot water in a home heating system. Water enters the well-insulated pump operating at steady state at a rate of 0.42 gal/min. The inlet pressure and temperature are 14.7 lbf/in.², and 180°F, respectively; at the exit the pressure is 120 Ibf/in.2 The pump requires 1/ 15 hp of power input. Water can be modeled as an incompressible substance with constant density of 60.58 Ib/ft³ and constant specific heat of 1 Btu/lb - °R. Neglecting kinetic and potential energy effects, determine the temperature change, in °R, as the water flows through the pump. AT = i °R
A pump is used to circulate hot water in a home heating system. Water enters the well-insulated pump operating at steady state at a rate of 0.42 gal/min. The inlet pressure and temperature are 14.7 lbf/in.², and 180°F, respectively; at the exit the pressure is 120 Ibf/in.2 The pump requires 1/ 15 hp of power input. Water can be modeled as an incompressible substance with constant density of 60.58 Ib/ft³ and constant specific heat of 1 Btu/lb - °R. Neglecting kinetic and potential energy effects, determine the temperature change, in °R, as the water flows through the pump. AT = i °R
Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
Related questions
Question
100%
![A pump is used to circulate hot water in a home heating system. Water enters the well-insulated pump operating at steady state at a
rate of 0.42 gal/min. The inlet pressure and temperature are 14.7 Ibf/in.², and 180°F, respectively; at the exit the pressure is 120
Ibf/in.2 The pump requires 1/ 15 hp of power input. Water can be modeled as an incompressible substance with constant density of
60.58 Ib/ft3 and constant specific heat of 1 Btu/lb · °R.
Neglecting kinetic and potential energy effects, determine the temperature change, in °R, as the water flows through the pump.
AT =
i
°R](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F5cb7802c-98d7-4bcd-869c-1925cce04d7d%2F9965bb87-0b7d-4d1f-a26f-b022dded6cd9%2Fnenftjw2_processed.jpeg&w=3840&q=75)
Transcribed Image Text:A pump is used to circulate hot water in a home heating system. Water enters the well-insulated pump operating at steady state at a
rate of 0.42 gal/min. The inlet pressure and temperature are 14.7 Ibf/in.², and 180°F, respectively; at the exit the pressure is 120
Ibf/in.2 The pump requires 1/ 15 hp of power input. Water can be modeled as an incompressible substance with constant density of
60.58 Ib/ft3 and constant specific heat of 1 Btu/lb · °R.
Neglecting kinetic and potential energy effects, determine the temperature change, in °R, as the water flows through the pump.
AT =
i
°R
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 2 steps with 1 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Elements Of Electromagnetics](https://www.bartleby.com/isbn_cover_images/9780190698614/9780190698614_smallCoverImage.gif)
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
![Mechanics of Materials (10th Edition)](https://www.bartleby.com/isbn_cover_images/9780134319650/9780134319650_smallCoverImage.gif)
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
![Thermodynamics: An Engineering Approach](https://www.bartleby.com/isbn_cover_images/9781259822674/9781259822674_smallCoverImage.gif)
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
![Elements Of Electromagnetics](https://www.bartleby.com/isbn_cover_images/9780190698614/9780190698614_smallCoverImage.gif)
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
![Mechanics of Materials (10th Edition)](https://www.bartleby.com/isbn_cover_images/9780134319650/9780134319650_smallCoverImage.gif)
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
![Thermodynamics: An Engineering Approach](https://www.bartleby.com/isbn_cover_images/9781259822674/9781259822674_smallCoverImage.gif)
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
![Control Systems Engineering](https://www.bartleby.com/isbn_cover_images/9781118170519/9781118170519_smallCoverImage.gif)
Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY
![Mechanics of Materials (MindTap Course List)](https://www.bartleby.com/isbn_cover_images/9781337093347/9781337093347_smallCoverImage.gif)
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning
![Engineering Mechanics: Statics](https://www.bartleby.com/isbn_cover_images/9781118807330/9781118807330_smallCoverImage.gif)
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY