A pump is used to circulate hot water in a home heating system. Water enters the well-insulated pump operating at steady state at a rate of 0.42 gal/min. The inlet pressure and temperature are 14.7 Ibf/in.?, and 180°F, respectively; at the exit the pressure is 90 Ibf/in.? The pump requires 1/35 hp of power input. Water can be modeled as an incompressible substance with constant density of 60.58 Ib/ft³ and constant specific heat of 1 Btu/lb · °R. Neglecting kinetic and potential energy effects, determine the temperature change, in °R, as the water flows through the pump. AT = °R

Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
icon
Related questions
Question

Step by step solution and answer please thank youu

View Policies
Current Attempt in Progress
A pump is used to circulate hot water in a home heating system. Water enters the well-insulated pump operating at steady state at a
rate of 0.42 gal/min. The inlet pressure and temperature are 14.7 Ibf/in.?, and 180°F, respectively; at the exit the pressure is 90 Ibf/in.?
The pump requires 1/35 hp of power input. Water can be modeled as an incompressible substance with constant density of 60.58
Ib/ft3 and constant specific heat of 1 Btu/lb · °R.
Neglecting kinetic and potential energy effects, determine the temperature change, in °R, as the water flows through the pump.
AT =
i
°R
eTextbook and Media
Save for Later
Attempts: 0 of 4 used
Submit Answer
Transcribed Image Text:View Policies Current Attempt in Progress A pump is used to circulate hot water in a home heating system. Water enters the well-insulated pump operating at steady state at a rate of 0.42 gal/min. The inlet pressure and temperature are 14.7 Ibf/in.?, and 180°F, respectively; at the exit the pressure is 90 Ibf/in.? The pump requires 1/35 hp of power input. Water can be modeled as an incompressible substance with constant density of 60.58 Ib/ft3 and constant specific heat of 1 Btu/lb · °R. Neglecting kinetic and potential energy effects, determine the temperature change, in °R, as the water flows through the pump. AT = i °R eTextbook and Media Save for Later Attempts: 0 of 4 used Submit Answer
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps with 2 images

Blurred answer
Recommended textbooks for you
Elements Of Electromagnetics
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
Mechanics of Materials (10th Edition)
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Thermodynamics: An Engineering Approach
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
Control Systems Engineering
Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY
Mechanics of Materials (MindTap Course List)
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning
Engineering Mechanics: Statics
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY