A prototype jet-powered UAV has a wing planform with S = 60 ft2 and b = 20 ft. and an Oswald efficiency of e = 0.82. The aircraft has CD,0= 0.04. The weight is 2,000 lb. For this aircraft, determine the following: a. Minimum thrust required at sea level for steady level flight. b. Velocity of minimum thrust required for the conditions in (a). c. The induced drag for the conditions in (a). d. If Vmax at sea level is 550 fps, what is the thrust available in lb? e. Given the thrust available is produced by a single turbojet engine with a cross-sectional inlet area of Ain= 2.5 ft2, determine the exit velocity from the engine and the propulsion efficiency assuming the exit pressure is atmospheric..

Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
icon
Related questions
Question

A prototype jet-powered UAV has a wing planform with S = 60 ft2 and b = 20 ft. and an Oswald efficiency of e = 0.82. The aircraft has CD,0= 0.04. The weight is 2,000 lb. For this aircraft, determine the following:

a. Minimum thrust required at sea level for steady level flight.

b. Velocity of minimum thrust required for the conditions in (a).

c. The induced drag for the conditions in (a).

d. If Vmax at sea level is 550 fps, what is the thrust available in lb?

e. Given the thrust available is produced by a single turbojet engine with a cross-sectional inlet area of Ain= 2.5 ft2, determine the exit velocity from the engine and the propulsion efficiency assuming the exit pressure is atmospheric.. 

d. If Vmax at sea level is 550 fps, what is the thrust available in lb?
e. Given the thrust available is produced by a single turbojet engine with a cross-sectional inlet
area of Ain= 2.5 ft², determine the exit velocity from the engine and the propulsion efficiency
assuming the exit pressure is atmospheric..
Transcribed Image Text:d. If Vmax at sea level is 550 fps, what is the thrust available in lb? e. Given the thrust available is produced by a single turbojet engine with a cross-sectional inlet area of Ain= 2.5 ft², determine the exit velocity from the engine and the propulsion efficiency assuming the exit pressure is atmospheric..
A prototype jet-powered UAV has a wing planform with S = 60 ft2 and b = 20 ft. and an Oswald
efficiency of e = 0.82. The aircraft has CD,0= 0.04. The weight is 2,000 lb. For this aircraft,
determine the following:
a. Minimum thrust required at sea level for steady level flight.
b. Velocity of minimum thrust required for the conditions in (a).
c. The induced drag for the conditions in (a).
Transcribed Image Text:A prototype jet-powered UAV has a wing planform with S = 60 ft2 and b = 20 ft. and an Oswald efficiency of e = 0.82. The aircraft has CD,0= 0.04. The weight is 2,000 lb. For this aircraft, determine the following: a. Minimum thrust required at sea level for steady level flight. b. Velocity of minimum thrust required for the conditions in (a). c. The induced drag for the conditions in (a).
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps

Blurred answer
Knowledge Booster
Dynamics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
Elements Of Electromagnetics
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
Mechanics of Materials (10th Edition)
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Thermodynamics: An Engineering Approach
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
Control Systems Engineering
Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY
Mechanics of Materials (MindTap Course List)
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning
Engineering Mechanics: Statics
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY