A population with four age classes has a Leslie matrix L- 0 0.4 0 0 0 0 0.6 0 0.7 0 0 0 If the initial population vector is Xo 10 10 10 compute x₁, x₂, and x

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
In this exercise, we explore population dynamics using a Leslie matrix, which models the population of a species divided into age classes. The matrix, \( L \), is given as:

\[
L = \begin{bmatrix} 
0 & 1 & 2 & 5 \\ 
0.7 & 0 & 0 & 0 \\ 
0 & 0.4 & 0 & 0 \\ 
0 & 0 & 0.6 & 0 
\end{bmatrix}
\]

The initial population vector \( \mathbf{x_0} \) is given by:

\[
\mathbf{x_0} = \begin{bmatrix} 
10 \\ 
10 \\ 
10 \\ 
10 
\end{bmatrix}
\]

The task is to compute the population vectors \( \mathbf{x_1} \), \( \mathbf{x_2} \), and \( \mathbf{x_3} \).

### Steps to Solve:

1. **Calculate \( \mathbf{x_1} \):**
   Multiply the matrix \( L \) with the initial vector \( \mathbf{x_0} \).

   \[
   \mathbf{x_1} = L \cdot \mathbf{x_0}
   \]
   \[
   \mathbf{x_1} = \begin{bmatrix} 
   80 \\ 
   7 \\ 
   4 \\ 
   6 
   \end{bmatrix}
   \]

2. **Calculate \( \mathbf{x_2} \):**
   Multiply the matrix \( L \) with the vector \( \mathbf{x_1} \).

   \[
   \mathbf{x_2} = L \cdot \mathbf{x_1}
   \]
   \[
   \mathbf{x_2} = \begin{bmatrix} 
   80 \\ 
   1.4 \\ 
   3 \\ 
   2.4 
   \end{bmatrix}
   \]

3. **Calculate \( \mathbf{x_3} \):**
   Multiply the matrix \( L \) with the vector \( \mathbf{x_2} \).

   \[
   \mathbf{x_3} = L \cdot \mathbf{x_2}
   \]

Provide the resulting vector based on the calculations.

This Leslie matrix describes transitions of the population through different age classes, using birth rates and
Transcribed Image Text:In this exercise, we explore population dynamics using a Leslie matrix, which models the population of a species divided into age classes. The matrix, \( L \), is given as: \[ L = \begin{bmatrix} 0 & 1 & 2 & 5 \\ 0.7 & 0 & 0 & 0 \\ 0 & 0.4 & 0 & 0 \\ 0 & 0 & 0.6 & 0 \end{bmatrix} \] The initial population vector \( \mathbf{x_0} \) is given by: \[ \mathbf{x_0} = \begin{bmatrix} 10 \\ 10 \\ 10 \\ 10 \end{bmatrix} \] The task is to compute the population vectors \( \mathbf{x_1} \), \( \mathbf{x_2} \), and \( \mathbf{x_3} \). ### Steps to Solve: 1. **Calculate \( \mathbf{x_1} \):** Multiply the matrix \( L \) with the initial vector \( \mathbf{x_0} \). \[ \mathbf{x_1} = L \cdot \mathbf{x_0} \] \[ \mathbf{x_1} = \begin{bmatrix} 80 \\ 7 \\ 4 \\ 6 \end{bmatrix} \] 2. **Calculate \( \mathbf{x_2} \):** Multiply the matrix \( L \) with the vector \( \mathbf{x_1} \). \[ \mathbf{x_2} = L \cdot \mathbf{x_1} \] \[ \mathbf{x_2} = \begin{bmatrix} 80 \\ 1.4 \\ 3 \\ 2.4 \end{bmatrix} \] 3. **Calculate \( \mathbf{x_3} \):** Multiply the matrix \( L \) with the vector \( \mathbf{x_2} \). \[ \mathbf{x_3} = L \cdot \mathbf{x_2} \] Provide the resulting vector based on the calculations. This Leslie matrix describes transitions of the population through different age classes, using birth rates and
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Similar questions
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,