0 0.6 A population with four age classes has a Leslie matrix L = 0 0 1 2 0 DON 0 5 0.7 0 0 0 0.4 0 If the initial population vector is x = 10 10 10 10 compute x₁, x₂, and X3.
0 0.6 A population with four age classes has a Leslie matrix L = 0 0 1 2 0 DON 0 5 0.7 0 0 0 0.4 0 If the initial population vector is x = 10 10 10 10 compute x₁, x₂, and X3.
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
![**Leslie Matrix Population Model**
A population with four age classes can be modeled using a Leslie matrix \( L \). The Leslie matrix is given by:
\[
L = \begin{bmatrix}
0 & 1 & 2 & 5 \\
0.6 & 0 & 0 & 0 \\
0 & 0.7 & 0 & 0 \\
0 & 0 & 0.4 & 0
\end{bmatrix}
\]
The initial population vector \( \mathbf{x}_0 \) is:
\[
\mathbf{x}_0 = \begin{bmatrix}
10 \\
10 \\
10 \\
10
\end{bmatrix}
\]
Using the Leslie matrix, compute the population vectors \( \mathbf{x}_1 \), \( \mathbf{x}_2 \), and \( \mathbf{x}_3 \).
**Computed Population Vectors:**
\[
\mathbf{x}_1 = \begin{bmatrix}
80 \\
6 \\
7 \\
4
\end{bmatrix}
\]
\[
\mathbf{x}_2 = \begin{bmatrix}
66 \\
80 \\
1.5 \\
1.6
\end{bmatrix}
\]
\[
\mathbf{x}_3 = \begin{bmatrix}
\boxed{} \\
\boxed{} \\
\boxed{} \\
\boxed{}
\end{bmatrix}
\]
**Explanation of Computation:**
- The Leslie matrix is used to project the growth of populations across different age classes.
- Each element in the resulting vector \( \mathbf{x}_n \) is calculated using the multiplication of the Leslie matrix with the previous population vector \( \mathbf{x}_{n-1} \).
Understanding the matrix and computing these vectors is crucial in the study of population dynamics, allowing researchers to predict changes in population structure over time.](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Fa1e36031-6f93-4211-8c57-892d2fd1b551%2Fc3a219c1-c4a3-45d3-b9ca-9544f0cce601%2Fn8zqjin_processed.jpeg&w=3840&q=75)
Transcribed Image Text:**Leslie Matrix Population Model**
A population with four age classes can be modeled using a Leslie matrix \( L \). The Leslie matrix is given by:
\[
L = \begin{bmatrix}
0 & 1 & 2 & 5 \\
0.6 & 0 & 0 & 0 \\
0 & 0.7 & 0 & 0 \\
0 & 0 & 0.4 & 0
\end{bmatrix}
\]
The initial population vector \( \mathbf{x}_0 \) is:
\[
\mathbf{x}_0 = \begin{bmatrix}
10 \\
10 \\
10 \\
10
\end{bmatrix}
\]
Using the Leslie matrix, compute the population vectors \( \mathbf{x}_1 \), \( \mathbf{x}_2 \), and \( \mathbf{x}_3 \).
**Computed Population Vectors:**
\[
\mathbf{x}_1 = \begin{bmatrix}
80 \\
6 \\
7 \\
4
\end{bmatrix}
\]
\[
\mathbf{x}_2 = \begin{bmatrix}
66 \\
80 \\
1.5 \\
1.6
\end{bmatrix}
\]
\[
\mathbf{x}_3 = \begin{bmatrix}
\boxed{} \\
\boxed{} \\
\boxed{} \\
\boxed{}
\end{bmatrix}
\]
**Explanation of Computation:**
- The Leslie matrix is used to project the growth of populations across different age classes.
- Each element in the resulting vector \( \mathbf{x}_n \) is calculated using the multiplication of the Leslie matrix with the previous population vector \( \mathbf{x}_{n-1} \).
Understanding the matrix and computing these vectors is crucial in the study of population dynamics, allowing researchers to predict changes in population structure over time.
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 2 steps

Recommended textbooks for you

Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated

Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education

Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY

Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated

Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education

Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY

Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,

