0 0.6 A population with four age classes has a Leslie matrix L = 0 0 1 2 0 DON 0 5 0.7 0 0 0 0.4 0 If the initial population vector is x = 10 10 10 10 compute x₁, x₂, and X3.

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
**Leslie Matrix Population Model**

A population with four age classes can be modeled using a Leslie matrix \( L \). The Leslie matrix is given by:

\[
L = \begin{bmatrix}
0 & 1 & 2 & 5 \\
0.6 & 0 & 0 & 0 \\
0 & 0.7 & 0 & 0 \\
0 & 0 & 0.4 & 0 
\end{bmatrix}
\]

The initial population vector \( \mathbf{x}_0 \) is:

\[
\mathbf{x}_0 = \begin{bmatrix}
10 \\
10 \\
10 \\
10 
\end{bmatrix}
\]

Using the Leslie matrix, compute the population vectors \( \mathbf{x}_1 \), \( \mathbf{x}_2 \), and \( \mathbf{x}_3 \).

**Computed Population Vectors:**

\[
\mathbf{x}_1 = \begin{bmatrix}
80 \\
6 \\
7 \\
4 
\end{bmatrix}
\]

\[
\mathbf{x}_2 = \begin{bmatrix}
66 \\
80 \\
1.5 \\
1.6 
\end{bmatrix}
\]

\[
\mathbf{x}_3 = \begin{bmatrix}
\boxed{} \\
\boxed{} \\
\boxed{} \\
\boxed{}
\end{bmatrix}
\]

**Explanation of Computation:**
- The Leslie matrix is used to project the growth of populations across different age classes.
- Each element in the resulting vector \( \mathbf{x}_n \) is calculated using the multiplication of the Leslie matrix with the previous population vector \( \mathbf{x}_{n-1} \).

Understanding the matrix and computing these vectors is crucial in the study of population dynamics, allowing researchers to predict changes in population structure over time.
Transcribed Image Text:**Leslie Matrix Population Model** A population with four age classes can be modeled using a Leslie matrix \( L \). The Leslie matrix is given by: \[ L = \begin{bmatrix} 0 & 1 & 2 & 5 \\ 0.6 & 0 & 0 & 0 \\ 0 & 0.7 & 0 & 0 \\ 0 & 0 & 0.4 & 0 \end{bmatrix} \] The initial population vector \( \mathbf{x}_0 \) is: \[ \mathbf{x}_0 = \begin{bmatrix} 10 \\ 10 \\ 10 \\ 10 \end{bmatrix} \] Using the Leslie matrix, compute the population vectors \( \mathbf{x}_1 \), \( \mathbf{x}_2 \), and \( \mathbf{x}_3 \). **Computed Population Vectors:** \[ \mathbf{x}_1 = \begin{bmatrix} 80 \\ 6 \\ 7 \\ 4 \end{bmatrix} \] \[ \mathbf{x}_2 = \begin{bmatrix} 66 \\ 80 \\ 1.5 \\ 1.6 \end{bmatrix} \] \[ \mathbf{x}_3 = \begin{bmatrix} \boxed{} \\ \boxed{} \\ \boxed{} \\ \boxed{} \end{bmatrix} \] **Explanation of Computation:** - The Leslie matrix is used to project the growth of populations across different age classes. - Each element in the resulting vector \( \mathbf{x}_n \) is calculated using the multiplication of the Leslie matrix with the previous population vector \( \mathbf{x}_{n-1} \). Understanding the matrix and computing these vectors is crucial in the study of population dynamics, allowing researchers to predict changes in population structure over time.
Expert Solution
steps

Step by step

Solved in 2 steps

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,