A population grows according to the logistic model 35 N = 1 +0.2e-1.3t where t is measured in years and N is measured in thousands. (a) What is r for this population? per year (b) What is the environmental carrying capacity K? thousand (c) This population is subject to harvesting. What is the optimum yield level? thousand

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
## Population Growth According to the Logistic Model

The population growth follows the logistic model described by the formula:

\[ N = \frac{35}{1 + 0.2e^{-1.3t}} \]

where \( t \) is measured in years and \( N \) is measured in thousands.

### Questions:

**(a) What is \( r \) for this population?**

\_\_\_\_\_\_\_\_\_\_\_ per year

**(b) What is the environmental carrying capacity \( K \)?**

\_\_\_\_\_\_\_\_\_\_\_ thousand

**(c) This population is subject to harvesting. What is the optimum yield level?**

\_\_\_\_\_\_\_\_\_\_\_ thousand
Transcribed Image Text:## Population Growth According to the Logistic Model The population growth follows the logistic model described by the formula: \[ N = \frac{35}{1 + 0.2e^{-1.3t}} \] where \( t \) is measured in years and \( N \) is measured in thousands. ### Questions: **(a) What is \( r \) for this population?** \_\_\_\_\_\_\_\_\_\_\_ per year **(b) What is the environmental carrying capacity \( K \)?** \_\_\_\_\_\_\_\_\_\_\_ thousand **(c) This population is subject to harvesting. What is the optimum yield level?** \_\_\_\_\_\_\_\_\_\_\_ thousand
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,