A plant using R134a refrigerant has a cooling capacity of 352 kW of refrigeration. It evaporates at 0 C and condenses at 35 C, with the 5 of superheat at the evaporator outlet and 5 K of sub-cooling at the condenser outlet. Assuming isentropic compression and ignoring pressure drops in the piping, the evaporator and condenser, determ the following; a) The refrigeration effect. b) The mass flow rate of refrigerant ) The compressor power d) The rate of heat.rejection at the condenser e) The COP ) The corresponding Carnot COP g) The percentage Carnot-efficiency

Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
icon
Related questions
Question
A plant using R134a refrigerant has a cooling capacity of 352 kW of
refrigeration. It evaporates at 0 Cand condenses at 35 C, with the 5
of superheat at the evaporator outlet and 5 K of sub-cooling at the
condenser outlet. Assuming isentropic compression and ignoring
pressure drops in the piping, the evaporator and condenser, determi
the following;
a) The refrigeration effect
b) The mass flow rate of refrigerant
) The compressor power
d) The rate of heatrejection at the condenser
e) The COP
0 The corresponding Carnot COP
g) The percentage Carnot-efficiency
Transcribed Image Text:A plant using R134a refrigerant has a cooling capacity of 352 kW of refrigeration. It evaporates at 0 Cand condenses at 35 C, with the 5 of superheat at the evaporator outlet and 5 K of sub-cooling at the condenser outlet. Assuming isentropic compression and ignoring pressure drops in the piping, the evaporator and condenser, determi the following; a) The refrigeration effect b) The mass flow rate of refrigerant ) The compressor power d) The rate of heatrejection at the condenser e) The COP 0 The corresponding Carnot COP g) The percentage Carnot-efficiency
Expert Solution
steps

Step by step

Solved in 5 steps with 1 images

Blurred answer
Knowledge Booster
Strengthening of Alloys
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Elements Of Electromagnetics
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
Mechanics of Materials (10th Edition)
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Thermodynamics: An Engineering Approach
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
Control Systems Engineering
Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY
Mechanics of Materials (MindTap Course List)
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning
Engineering Mechanics: Statics
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY