A plane wall of thickness 2L = 2*33 mm and thermal conductivity k = 7 W/m-K experiences uniform volumetric heat generation at a rate q˙, while convection heat transfer occurs at both of its surfaces (x = −L, + L), each of which is exposed to a fluid of temperature T∞ = 31°C. Under steady-state conditions, the temperature distribution in the wall is of the form T(x) = a + bx + cx2 where a = 85°C, b = −-218°C/m, c = −-23,942°C/m2, and x is in meters. The origin of the x-coordinate is at the midplane of the wall. (a) Sketch the temperature distribution and identify significant physical features. (b) What is the volumetric rate of heat generation q˙ in the wall? (c) Obtain an expression for the heat flux distribution qx″(x). Is the heat flux zero at any location? Explain any significant features of the distribution.

Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
icon
Related questions
Question

A plane wall of thickness 2L = 2*33 mm and thermal conductivity k = 7 W/m-K experiences uniform volumetric heat generation at a rate q˙, while convection heat transfer occurs at both of its surfaces (x = −L, + L), each of which is exposed to a fluid of temperature T∞ = 31°C. Under steady-state conditions, the temperature distribution in the wall is of the form T(x) = a + bx + cx2 where a = 85°C, b = −-218°C/m, c = −-23,942°C/m2, and x is in meters. The origin of the x-coordinate is at the midplane of the wall.

 

 

(a) Sketch the temperature distribution and identify significant physical features.

 

 

(b) What is the volumetric rate of heat generation q˙ in the wall?

 

 

(c) Obtain an expression for the heat flux distribution qx″(x). Is the heat flux zero at any location? Explain any significant features of the distribution.

 

(d) Determine the surface heat fluxes, qx″(−L) and qx″(+L). How are these fluxes related to the heat generation rate?

 

 

(e) What are the convection coefficients h for the surfaces at x = −L and x = +L?

Enter h(+L) as the answer below

Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Knowledge Booster
Convection
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
Elements Of Electromagnetics
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
Mechanics of Materials (10th Edition)
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Thermodynamics: An Engineering Approach
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
Control Systems Engineering
Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY
Mechanics of Materials (MindTap Course List)
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning
Engineering Mechanics: Statics
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY