A plane electromagnetic wave is given by Ex=+Eo sin(ky- wt) and B₂= - Bo sin(ky-ot) with all other components zero. Which equation results upon plugging these electric and magnetic fields into Faraday's law and performing the partial derivatives? Hint: use the third equation of Faraday's law listed above.

icon
Related questions
Question
Faraday's Law
дЕz" деу JBx:
ду.
дz
at
0
дЕх
дz
деу
дх
дЕz
?x
дех
ду
--
=
әв,
Ət
двz
Ət
O None of these
Ampere-Maxwell law
ӘEx
JBz дву
ду
дz
at
әBх
дz
aBy
?x
JBz
Әx
JBx
ду
= Moto
= Moto
= Moto
-
k Eo cos(ky - @ t ) = - @ Bo cos(ky-ot)
деу
Ət
A plane electromagnetic wave is given by
Ex = + Eo sin( k y - ∞ t ) and Bz = - Bo sin(ky-t)
with all other components zero. Which equation results upon plugging these electric and magnetic
fields into Faraday's law and performing the partial derivatives? Hint: use the third equation of
Faraday's law listed above.
JEz
at
O + o Eo cos( ky - w t ) = - k Bo cos(ky-ot)
O + к E cos(ky - @t) = - @ Bo cos(ky-wt)
O - w E. cos(ky - @ t ) = - k Bo cos(ky-wt)
=
4
Transcribed Image Text:Faraday's Law дЕz" деу JBx: ду. дz at 0 дЕх дz деу дх дЕz ?x дех ду -- = әв, Ət двz Ət O None of these Ampere-Maxwell law ӘEx JBz дву ду дz at әBх дz aBy ?x JBz Әx JBx ду = Moto = Moto = Moto - k Eo cos(ky - @ t ) = - @ Bo cos(ky-ot) деу Ət A plane electromagnetic wave is given by Ex = + Eo sin( k y - ∞ t ) and Bz = - Bo sin(ky-t) with all other components zero. Which equation results upon plugging these electric and magnetic fields into Faraday's law and performing the partial derivatives? Hint: use the third equation of Faraday's law listed above. JEz at O + o Eo cos( ky - w t ) = - k Bo cos(ky-ot) O + к E cos(ky - @t) = - @ Bo cos(ky-wt) O - w E. cos(ky - @ t ) = - k Bo cos(ky-wt) = 4
Faraday's Law
HEz
де, ду
ду
дz
-
дех де,
дEx
дz
?x
деу
дх
--
=
a Bx
at
- -
дву
Ət
Ampere-Maxwell law
дву
ӘEx
at
дz
двz
at
JBz
ду
JBx
дz
1
aBy
?x
JBz
?x
дех
ду
Take the same plane electromagnetic wave given in the previous question,
Ex = + Eo sin( ky-t) and Bz = - Bo sin(ky-ot)
with all other components zero. Which equation results upon plugging these electric and magnetic
fields into the Ampere-Maxwell law and performing the partial derivatives? Hint: use the first equation
of the Ampere-Maxwell law listed above.
Moto
JBx
ду
= Moto
ӘЕ,
у
at
?Е,
= моеоат
o-k Bocos(ky - w t ) = - @ μlo €o Eo cos(ky-at)
O
+ k Bo cos(ky - w t ) = - @ po 80 Eo cos(ky-ot)
O + @ Bo cos(ky - o
O None of these
O - o Bo cos( ky - o t ) = - k po €0 Eo cos(ky-at)
t ) = - k po 80 Eo cos( ky-at)
Transcribed Image Text:Faraday's Law HEz де, ду ду дz - дех де, дEx дz ?x деу дх -- = a Bx at - - дву Ət Ampere-Maxwell law дву ӘEx at дz двz at JBz ду JBx дz 1 aBy ?x JBz ?x дех ду Take the same plane electromagnetic wave given in the previous question, Ex = + Eo sin( ky-t) and Bz = - Bo sin(ky-ot) with all other components zero. Which equation results upon plugging these electric and magnetic fields into the Ampere-Maxwell law and performing the partial derivatives? Hint: use the first equation of the Ampere-Maxwell law listed above. Moto JBx ду = Moto ӘЕ, у at ?Е, = моеоат o-k Bocos(ky - w t ) = - @ μlo €o Eo cos(ky-at) O + k Bo cos(ky - w t ) = - @ po 80 Eo cos(ky-ot) O + @ Bo cos(ky - o O None of these O - o Bo cos( ky - o t ) = - k po €0 Eo cos(ky-at) t ) = - k po 80 Eo cos( ky-at)
Expert Solution
steps

Step by step

Solved in 2 steps with 2 images

Blurred answer