A piston cylinder contains 1.25 kg water at 25°C with a constant load on the piston such that the pressure is 300 kPa. A nozzle in a line to the cylinder is opened to enable flow to the outside atmosphere at 100 kPa and 25°C. The process continues until 85% of the initial mass has flowed out. At this point, the temperature of water increased by 10°C. Assume that the process is done in an Water isobaric manner. Write the mass and energy balance equations and calculate the work (kJ) and heat (kJ) involved in the process if the exit velocity is 40 m/s. For compressed liquid, assume the substance is a saturated liquid at the given temnerature

Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
icon
Related questions
Question
100%
A piston cylinder contains 1.25 kg water at 25°C with a constant load on the
piston such that the pressure is 300 kPa. A nozzle in a line to the cylinder is
opened to enable flow to the outside atmosphere at 100 kPa and 25°C. The
process continues until 85% of the initial mass has flowed out. At this point, the
temperature of water increased by 10°C. Assume that the process is done in an
Water
isobaric manner. Write the mass and energy balance equations and calculate
the work (kJ) and heat (kJ) involved in the process if the exit velocity is 40 m/s.
For compressed liquid, assume the substance is a saturated liquid at the given
temperature.
Transcribed Image Text:A piston cylinder contains 1.25 kg water at 25°C with a constant load on the piston such that the pressure is 300 kPa. A nozzle in a line to the cylinder is opened to enable flow to the outside atmosphere at 100 kPa and 25°C. The process continues until 85% of the initial mass has flowed out. At this point, the temperature of water increased by 10°C. Assume that the process is done in an Water isobaric manner. Write the mass and energy balance equations and calculate the work (kJ) and heat (kJ) involved in the process if the exit velocity is 40 m/s. For compressed liquid, assume the substance is a saturated liquid at the given temperature.
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Knowledge Booster
Work and Heat
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Elements Of Electromagnetics
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
Mechanics of Materials (10th Edition)
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Thermodynamics: An Engineering Approach
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
Control Systems Engineering
Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY
Mechanics of Materials (MindTap Course List)
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning
Engineering Mechanics: Statics
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY