A pipe consists of 100 mm internal diameter and 8 mm thickness carries steam at 170°C. The convective heat transfer coefficient on the inner surface of pipe is 75 W/m2C. The pipe is insulated by two layers of insulation. The first layer of insulation is 46 mm in thickness having thermal conductivity of 0.14 W/m°C. The second layer of insulation is also 46 mm in thickness having thermal conductivity of 0.46 W/mC. Ambient air temperature = 33°C. The convective heat transfer coefficient from the outer surface of pipe = 12 W/m2C. Thermal conductivity of steam pipe = 46 W/m°C. Calculate the heat loss per unit length of pipe and determine the interface temperatures. Suggest the materials used for insulation.
A pipe consists of 100 mm internal diameter and 8 mm thickness carries steam at 170°C. The convective heat transfer coefficient on the inner surface of pipe is 75 W/m2C. The pipe is insulated by two layers of insulation. The first layer of insulation is 46 mm in thickness having thermal conductivity of 0.14 W/m°C. The second layer of insulation is also 46 mm in thickness having thermal conductivity of 0.46 W/mC. Ambient air temperature = 33°C. The convective heat transfer coefficient from the outer surface of pipe = 12 W/m2C. Thermal conductivity of steam pipe = 46 W/m°C. Calculate the heat loss per unit length of pipe and determine the interface temperatures. Suggest the materials used for insulation.
Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
Related questions
Question
A pipe consists of 100 mm internal diameter and 8 mm thickness carries steam at 170°C. The convective heat transfer coefficient on the inner surface of pipe is 75 W/m2C. The pipe is insulated by two layers of insulation. The first layer of insulation is 46 mm in thickness having thermal conductivity of 0.14 W/m°C. The second layer of insulation is also 46 mm in thickness having thermal conductivity of 0.46 W/mC. Ambient air temperature = 33°C. The convective heat transfer coefficient from the outer surface of pipe = 12 W/m2C. Thermal conductivity of steam pipe = 46 W/m°C. Calculate the heat loss per unit length of pipe and determine the interface temperatures. Suggest the materials used for insulation.
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 2 steps
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Recommended textbooks for you
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY