A pipe bends through 900 from its initial direction as shown in fig.13. The pipe reduces in diameter such that the velocity at point (2) is 1.5 times the velocity at point (1). The pipe is 200 mm diameter at point (1) and the static pressure is 100 kPa. The volume flow rate is 0.2 m3/s. Assume there is no friețion. Calculate the following. a) The static pressure at (2). b) The velocity at (2). c) The horizontal and vertical forces on the bend Fµ and Fy. d) The total resultant force on the bend.

Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
icon
Related questions
Question
A pipe bends through 900 from its initial direction as shown in fig.13. The pipe reduces
in diameter such that the velocity at point (2) is 1.5 times the velocity at point (1). The
pipe is 200 mm diameter at point (1) and the static pressure is 100 kPa. The volume
flow rate is 0.2 m3/s. Assume there is no friction. Calculate the following.
a) The static pressure at (2).
b) The velocity at (2).
c) The horizontal and vertical forces on the bend FH and Fy.
d) The total resultant force on the bend.
(1)
Transcribed Image Text:A pipe bends through 900 from its initial direction as shown in fig.13. The pipe reduces in diameter such that the velocity at point (2) is 1.5 times the velocity at point (1). The pipe is 200 mm diameter at point (1) and the static pressure is 100 kPa. The volume flow rate is 0.2 m3/s. Assume there is no friction. Calculate the following. a) The static pressure at (2). b) The velocity at (2). c) The horizontal and vertical forces on the bend FH and Fy. d) The total resultant force on the bend. (1)
Expert Solution
steps

Step by step

Solved in 3 steps with 2 images

Blurred answer
Knowledge Booster
Fluid Dynamics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Elements Of Electromagnetics
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
Mechanics of Materials (10th Edition)
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Thermodynamics: An Engineering Approach
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
Control Systems Engineering
Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY
Mechanics of Materials (MindTap Course List)
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning
Engineering Mechanics: Statics
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY