A (nonconstant) harmonic function takes its maximum value and its minimum value on the boundary of any region (not at an interior point). Thus, for example, the electrostatic potential V in a region containing no free charge takes on its largest and smallest values on the boundary of the region; similarly, the temperature T of a body containing no sources of heat takes its largest and smallest values on the surface of the body. Prove this fact (for two-dimensional regions) as follows: Suppose that it is claimed that u(x, y) takes its maximum value at some interior point a; this means that, at all points of some small disk about a, the values of u(x, y) are nolarger than at a. Show by Problem 36 that such a claim leads to a contradiction (unless u = const.). Similarly prove that u(x, y) cannot take its minimum value at an interior point.
A (nonconstant) harmonic function takes its maximum value and its minimum value on the boundary of any region (not at an interior point). Thus, for example, the electrostatic potential V in a region containing no free charge takes on its largest and smallest values on the boundary of the region; similarly, the temperature T of a body containing no sources of heat takes its largest and smallest values on the surface of the body. Prove this fact (for two-dimensional regions) as follows: Suppose that it is claimed that u(x, y) takes its maximum value at some interior point a; this means that, at all points of some small disk about a, the values of u(x, y) are no
larger than at a. Show by Problem 36 that such a claim leads to a contradiction (unless u = const.). Similarly prove that u(x, y) cannot take its minimum value at an interior point.
![](/static/compass_v2/shared-icons/check-mark.png)
Trending now
This is a popular solution!
Step by step
Solved in 3 steps
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
![College Physics](https://www.bartleby.com/isbn_cover_images/9781305952300/9781305952300_smallCoverImage.gif)
![University Physics (14th Edition)](https://www.bartleby.com/isbn_cover_images/9780133969290/9780133969290_smallCoverImage.gif)
![Introduction To Quantum Mechanics](https://www.bartleby.com/isbn_cover_images/9781107189638/9781107189638_smallCoverImage.jpg)
![College Physics](https://www.bartleby.com/isbn_cover_images/9781305952300/9781305952300_smallCoverImage.gif)
![University Physics (14th Edition)](https://www.bartleby.com/isbn_cover_images/9780133969290/9780133969290_smallCoverImage.gif)
![Introduction To Quantum Mechanics](https://www.bartleby.com/isbn_cover_images/9781107189638/9781107189638_smallCoverImage.jpg)
![Physics for Scientists and Engineers](https://www.bartleby.com/isbn_cover_images/9781337553278/9781337553278_smallCoverImage.gif)
![Lecture- Tutorials for Introductory Astronomy](https://www.bartleby.com/isbn_cover_images/9780321820464/9780321820464_smallCoverImage.gif)
![College Physics: A Strategic Approach (4th Editio…](https://www.bartleby.com/isbn_cover_images/9780134609034/9780134609034_smallCoverImage.gif)