A non-uniformly charged insulating sphere has a volume charge density p that is expressed as p= Br where B is a constant, and r is the radius from the center of the sphere. If the, the total charge of the sphere is Q and its maximum radius is R. What is the value for B? Sol.
A non-uniformly charged insulating sphere has a volume charge density p that is expressed as p= Br where B is a constant, and r is the radius from the center of the sphere. If the, the total charge of the sphere is Q and its maximum radius is R. What is the value for B? Sol.
College Physics
11th Edition
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Raymond A. Serway, Chris Vuille
Chapter1: Units, Trigonometry. And Vectors
Section: Chapter Questions
Problem 1CQ: Estimate the order of magnitude of the length, in meters, of each of the following; (a) a mouse, (b)...
Related questions
Question

Transcribed Image Text:A non-uniformly charged insulating sphere has a volume charge density p that is expressed as
p= Br
where B is a constant, and r is the radius from the center of the sphere. If the, the total charge of the sphere is Q and its maximum radius is R. What is the value for B?
Sol.
By definition, the volume charge density is expressed infinitesimally as
p=
where in
is the infinitesimal charge and
is the infinitesimal volume.
So, we haye
p = dq/
So we can write this as
dq = B
dV
But,
dV =
dr
By substitution, we get the following
dq = 4BT
dr
Using Integration operation and evaluating its limits, the equation, leads to
Q =
BT
Rearranging, we get
B =
/( T
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 2 steps
