A nerve cell is shaped like a cylinder. The membrane wall of the cylinder has a +0.07-V potential difference from the inside to the outside of the wall. To help maintain this potential difference, sodium ions are pumped from inside the cell to the outside. For a typical cell, 10^9 ions are pumped each second. a. Determine the change in chemical energy each second required to produce this increase in electric potential energy. b. If there are roughly 7×10^11 of these cells in the body, how much chemical energy is used in pumping sodium ions each second? c. Estimate the fraction of a person's metabolic rate used to pump these ions. Assume the metabolic rate to be 100 W.
A nerve cell is shaped like a cylinder. The membrane wall of the cylinder has a +0.07-V potential difference from the inside to the outside of the wall. To help maintain this potential difference, sodium ions are pumped from inside the cell to the outside. For a typical cell, 10^9 ions are pumped each second. a. Determine the change in chemical energy each second required to produce this increase in electric potential energy. b. If there are roughly 7×10^11 of these cells in the body, how much chemical energy is used in pumping sodium ions each second? c. Estimate the fraction of a person's metabolic rate used to pump these ions. Assume the metabolic rate to be 100 W.
College Physics
11th Edition
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Raymond A. Serway, Chris Vuille
Chapter1: Units, Trigonometry. And Vectors
Section: Chapter Questions
Problem 1CQ: Estimate the order of magnitude of the length, in meters, of each of the following; (a) a mouse, (b)...
Related questions
Question
A nerve cell is shaped like a cylinder. The membrane wall of the cylinder has a +0.07-V potential difference from the inside to the outside of the wall. To help maintain this potential difference, sodium ions are pumped from inside the cell to the outside. For a typical cell, 10^9 ions are pumped each second.
a. Determine the change in chemical energy each second required to produce this increase in electric potential energy.
b. If there are roughly 7×10^11 of these cells in the body, how much chemical energy is used in pumping sodium ions each second?
c. Estimate the fraction of a person's
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 2 steps
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Recommended textbooks for you
College Physics
Physics
ISBN:
9781305952300
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning
University Physics (14th Edition)
Physics
ISBN:
9780133969290
Author:
Hugh D. Young, Roger A. Freedman
Publisher:
PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:
9781107189638
Author:
Griffiths, David J., Schroeter, Darrell F.
Publisher:
Cambridge University Press
College Physics
Physics
ISBN:
9781305952300
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning
University Physics (14th Edition)
Physics
ISBN:
9780133969290
Author:
Hugh D. Young, Roger A. Freedman
Publisher:
PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:
9781107189638
Author:
Griffiths, David J., Schroeter, Darrell F.
Publisher:
Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:
9781337553278
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:
9780321820464
Author:
Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:
Addison-Wesley
College Physics: A Strategic Approach (4th Editio…
Physics
ISBN:
9780134609034
Author:
Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:
PEARSON