(a) N w E Pull rope in this direction S (b) The sum of the force vectors is zero. FIGURE P4.74

University Physics Volume 1
18th Edition
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:William Moebs, Samuel J. Ling, Jeff Sanny
Chapter2: Vectors
Section: Chapter Questions
Problem 87AP: Show that (BC)A is the volume of the parallelepiped, with edges formed by the three vectors in the...
icon
Related questions
Topic Video
Question

If your car is stuck in the mud and you don’t have a winch to pull it out, you can use a piece of rope and a tree to do the trick. First, you tie one end of the rope to your car and the other to a tree, then pull as hard as you can on the middle of the rope, as shown in P4.74a. This technique applies a force to the car much larger than the force that you can apply directly. To see why the car experiences such a large force, look at the forces acting on the center point of the rope, as shown in P4.74b. The sum of the forces is zero, thus the tension is much greater than the force you apply. It is this tension force that acts on the car and, with luck, pulls it free.

Suppose your efforts work, and the car begins to move forward out of the mud. As it does so, the force of the car on the rope is
A. Zero.
B. Less than the force of the rope on the car.
C. Equal to the force of the rope on the car.
D. Greater than the force of the rope on the car.

(a)
N
w E
Pull rope in this direction
S
(b)
The sum of the force
vectors is zero.
FIGURE P4.74
Transcribed Image Text:(a) N w E Pull rope in this direction S (b) The sum of the force vectors is zero. FIGURE P4.74
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps

Blurred answer
Knowledge Booster
Second law of motion
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
University Physics Volume 1
University Physics Volume 1
Physics
ISBN:
9781938168277
Author:
William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:
OpenStax - Rice University
Classical Dynamics of Particles and Systems
Classical Dynamics of Particles and Systems
Physics
ISBN:
9780534408961
Author:
Stephen T. Thornton, Jerry B. Marion
Publisher:
Cengage Learning
University Physics Volume 2
University Physics Volume 2
Physics
ISBN:
9781938168161
Author:
OpenStax
Publisher:
OpenStax