A box, initially at rest, is pushed up a ramp that makes an angle of 15◦ with the horizontal as shown in the diagram. The magnitude of the pushing force is 8m newtons, where m is the mass of the box in kilograms. The force is in a direction parallel to and up the ramp. The coefficient of sliding friction between the box and the ramp is 0.25. Model the box as a particle and take the magnitude of the acceleration due to gravity to be g = 9.8 m s−2 . Express the four forces in component form in terms of unknown magnitudes where appropriate and find an expression for the resultant force acting on the box. Hence find the magnitude of the acceleration of the box, in m s−2
Gravitational force
In nature, every object is attracted by every other object. This phenomenon is called gravity. The force associated with gravity is called gravitational force. The gravitational force is the weakest force that exists in nature. The gravitational force is always attractive.
Acceleration Due to Gravity
In fundamental physics, gravity or gravitational force is the universal attractive force acting between all the matters that exist or exhibit. It is the weakest known force. Therefore no internal changes in an object occurs due to this force. On the other hand, it has control over the trajectories of bodies in the solar system and in the universe due to its vast scope and universal action. The free fall of objects on Earth and the motions of celestial bodies, according to Newton, are both determined by the same force. It was Newton who put forward that the moon is held by a strong attractive force exerted by the Earth which makes it revolve in a straight line. He was sure that this force is similar to the downward force which Earth exerts on all the objects on it.
A box, initially at rest, is pushed up a ramp that makes an angle of 15◦ with the horizontal as shown in the diagram.
The magnitude of the pushing force is 8m newtons, where m is the mass of the box in kilograms. The force is in a direction parallel to and up the ramp. The coefficient of sliding friction between the box and the ramp is 0.25. Model the box as a particle and take the magnitude of the acceleration due to gravity to be g = 9.8 m s−2 .
Express the four forces in component form in terms of unknown magnitudes where appropriate and find an expression for the resultant force acting on the box.
Hence find the magnitude of the acceleration of the box, in m s−2
Trending now
This is a popular solution!
Step by step
Solved in 3 steps with 3 images