A mass ball m is abandoned from the home in a tube containing a high viscosity fluid. The fluıdo offers a resistance, R, to the movement proportional to its instantaneous velocity, that is, R = bv, where b is a constant. a) Build an ODE based on Newton's second law, with respect to the velocity of the sphere in this fluid b)What is the initial condition for this model?
Optimization
Optimization comes from the same root as "optimal". "Optimal" means the highest. When you do the optimization process, that is when you are "making it best" to maximize everything and to achieve optimal results, a set of parameters is the base for the selection of the best element for a given system.
Integration
Integration means to sum the things. In mathematics, it is the branch of Calculus which is used to find the area under the curve. The operation subtraction is the inverse of addition, division is the inverse of multiplication. In the same way, integration and differentiation are inverse operators. Differential equations give a relation between a function and its derivative.
Application of Integration
In mathematics, the process of integration is used to compute complex area related problems. With the application of integration, solving area related problems, whether they are a curve, or a curve between lines, can be done easily.
Volume
In mathematics, we describe the term volume as a quantity that can express the total space that an object occupies at any point in time. Usually, volumes can only be calculated for 3-dimensional objects. By 3-dimensional or 3D objects, we mean objects that have length, breadth, and height (or depth).
Area
Area refers to the amount of space a figure encloses and the number of square units that cover a shape. It is two-dimensional and is measured in square units.
A mass ball m is abandoned from the home in a tube containing a high viscosity fluid. The fluıdo offers a resistance, R, to the movement proportional to its instantaneous velocity, that is, R = bv, where b is a constant.
a) Build an ODE based on Newton's second law, with respect to the velocity of the sphere in this fluid
b)What is the initial condition for this model?
c)Resolve the initial value problem formed by (a) and (b) using the Laplace transform and obtain an expression for ball speed as a function of time.
d) According to (c) what will be the maximum speed reached by this sphere?
Step by step
Solved in 2 steps with 2 images