Given a velocity field: V = 1.8 ( rz (1-sin²(0))) er + 2.8 (1-cos2(0)+ rz) eg +1.8 ( rz tan(0) cos(0) ) ez m/s Find the angular velocity at (x,y,z) = (1, 0.7, 0.9) m. Give answers to three significant digits. er ee + ez 1/s Find the divergence of V at (x,y,z) = (1, 0.7, 0.9). div(V) = 1/s w =

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

Najabhai 

Given a velocity field:
V = 1.8 (rz (1-sin²(0))) er + 2.8 ( 1 - cos²(0) + rz) eg +1.8 ( rz tan(0) cos(0) ) ez m/s
Find the angular velocity at (x,y,z) = (1, 0.7, 0.9) m. Give answers to three significant digits.
ez 1/s
W
er
Find the divergence of V at (x,y,z) = (1, 0.7, 0.9).
div(V) =
1/s
+
ee
Transcribed Image Text:Given a velocity field: V = 1.8 (rz (1-sin²(0))) er + 2.8 ( 1 - cos²(0) + rz) eg +1.8 ( rz tan(0) cos(0) ) ez m/s Find the angular velocity at (x,y,z) = (1, 0.7, 0.9) m. Give answers to three significant digits. ez 1/s W er Find the divergence of V at (x,y,z) = (1, 0.7, 0.9). div(V) = 1/s + ee
Expert Solution
steps

Step by step

Solved in 3 steps with 4 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,