A marriage counselor has traditionally seen that the proportion p of all married couples for whom her communication program can prevent divorce is 77%. After making some recent changes, the marriage counselor now claims that her program can prevent divorce in more than 77% of married couples. In a random sample of 205 married couples who completed her program, 164 of them stayed together. Based on this sample, is there enough evidence to support the marriage counselor's claim at the 0.05 level of significance? Perform a one-tailed test. Then complete the parts below. Carry your intermediate computations to three or more decimal places. (If necessary, consult a list of formulas.) (a) state the null hypothesis Ho and the alternative hypothesis H₁. Ho : H₁ :0 (b) Determine the type of test statistic to use. (Choose one) ▼ (c) Find the value of the test statistic. (Round to three or more decimal places.) 0 (d) Find the p-value. (Round to three or more decimal places.) 0 (e) Is there enough evidence to support the marriage counselor's claim that the proportion of married couples for whom her program can prevent divorce is more than 77%? OYes O No μ x 0=0 X O S 2 00 0<0 Р S p OSO 020 ola >O

MATLAB: An Introduction with Applications
6th Edition
ISBN:9781119256830
Author:Amos Gilat
Publisher:Amos Gilat
Chapter1: Starting With Matlab
Section: Chapter Questions
Problem 1P
icon
Related questions
Question
### Hypothesis Testing for Proportions

A marriage counselor has traditionally observed that the proportion \( p \) of all married couples for whom her communication program can prevent divorce is 77%. After implementing recent changes, she now claims her program can prevent divorce in more than 77% of married couples. In a random sample of 205 married couples who completed her program, 164 of them stayed together. 

We need to determine if there is enough evidence to support the marriage counselor’s claim at the 0.05 level of significance.

#### Perform a One-Tailed Test
**Steps:**

(a) **State the Null and Alternative Hypotheses:**
- Null Hypothesis \( H_0: p = 0.77 \)
- Alternative Hypothesis \( H_1: p > 0.77 \)

(b) **Determine the Type of Test Statistic to Use:**
- Choose the appropriate statistical test for evaluating the proportion.

(c) **Find the Value of the Test Statistic:**
- Calculate the test statistic value. (Round to three or more decimal places.)

(d) **Find the p-Value:**
- Compute the p-value. (Round to three or more decimal places.)

(e) **Conclusion:**
- Is there enough evidence to support the marriage counselor’s claim that the proportion of married couples for whom her program can prevent divorce is more than 77%?

Options: Yes or No

---

This question encourages the application of hypothesis testing in statistics for making informed decisions about claims based on sample data.
Transcribed Image Text:### Hypothesis Testing for Proportions A marriage counselor has traditionally observed that the proportion \( p \) of all married couples for whom her communication program can prevent divorce is 77%. After implementing recent changes, she now claims her program can prevent divorce in more than 77% of married couples. In a random sample of 205 married couples who completed her program, 164 of them stayed together. We need to determine if there is enough evidence to support the marriage counselor’s claim at the 0.05 level of significance. #### Perform a One-Tailed Test **Steps:** (a) **State the Null and Alternative Hypotheses:** - Null Hypothesis \( H_0: p = 0.77 \) - Alternative Hypothesis \( H_1: p > 0.77 \) (b) **Determine the Type of Test Statistic to Use:** - Choose the appropriate statistical test for evaluating the proportion. (c) **Find the Value of the Test Statistic:** - Calculate the test statistic value. (Round to three or more decimal places.) (d) **Find the p-Value:** - Compute the p-value. (Round to three or more decimal places.) (e) **Conclusion:** - Is there enough evidence to support the marriage counselor’s claim that the proportion of married couples for whom her program can prevent divorce is more than 77%? Options: Yes or No --- This question encourages the application of hypothesis testing in statistics for making informed decisions about claims based on sample data.
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 5 steps with 1 images

Blurred answer
Similar questions
Recommended textbooks for you
MATLAB: An Introduction with Applications
MATLAB: An Introduction with Applications
Statistics
ISBN:
9781119256830
Author:
Amos Gilat
Publisher:
John Wiley & Sons Inc
Probability and Statistics for Engineering and th…
Probability and Statistics for Engineering and th…
Statistics
ISBN:
9781305251809
Author:
Jay L. Devore
Publisher:
Cengage Learning
Statistics for The Behavioral Sciences (MindTap C…
Statistics for The Behavioral Sciences (MindTap C…
Statistics
ISBN:
9781305504912
Author:
Frederick J Gravetter, Larry B. Wallnau
Publisher:
Cengage Learning
Elementary Statistics: Picturing the World (7th E…
Elementary Statistics: Picturing the World (7th E…
Statistics
ISBN:
9780134683416
Author:
Ron Larson, Betsy Farber
Publisher:
PEARSON
The Basic Practice of Statistics
The Basic Practice of Statistics
Statistics
ISBN:
9781319042578
Author:
David S. Moore, William I. Notz, Michael A. Fligner
Publisher:
W. H. Freeman
Introduction to the Practice of Statistics
Introduction to the Practice of Statistics
Statistics
ISBN:
9781319013387
Author:
David S. Moore, George P. McCabe, Bruce A. Craig
Publisher:
W. H. Freeman