A magnetic field turns the velocity of a particle but does not change the speed, because the force is always perpendicular to the velocity. Particle accelerators (like CERN,) bubble chambers (to detect and characterize particles,) and mass spectrometers (to identify ions) all rely on this circular motion of charged particles in a magnetic field. In section 26.3, we learn that the radius of the circle made by a charged particle moving perpendicular to a magnetic field is r= mv qB (a) A particle is observed moving to the right when it enters a magnetic field. The magnetic field points into the page. When the particle enters the field, it moves in a clockwise circle. What is the sign of the charge? (b) Explain using physics language why the radius gets larger when the mass increases, and smaller
A magnetic field turns the velocity of a particle but does not change the speed, because the force is always perpendicular to the velocity. Particle accelerators (like CERN,) bubble chambers (to detect and characterize particles,) and mass spectrometers (to identify ions) all rely on this circular motion of charged particles in a magnetic field. In section 26.3, we learn that the radius of the circle made by a charged particle moving perpendicular to a magnetic field is r= mv qB (a) A particle is observed moving to the right when it enters a magnetic field. The magnetic field points into the page. When the particle enters the field, it moves in a clockwise circle. What is the sign of the charge? (b) Explain using physics language why the radius gets larger when the mass increases, and smaller
Related questions
Question
100%
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 5 steps with 1 images
Follow-up Questions
Read through expert solutions to related follow-up questions below.