A long solenoid has n=900 turns per meter and a current I = 3.2 sin(wt). Inside the solenoid with a= 0.5 m and coaxial with it is a coil that has a radius of b = 0.2 m and consists of Nc = 100 turns in Figure. Circuit has a variable resistor, and at t=2 s resistor has 5 2. (a) Find the induced emf in the coil as a function of time if f=10 Hz. (b) Find the self-inductance of solenoid. (c) Find the current Irms of the circuit. (d) Write the expressions for E and B generated by solenoid in the form E %3D 8 sin(kx – wt) and Bmax sin(kx – wt) with numerical values for Bmax» k, and w when the wavelength 2 = 50 = 4n x 10-7 T.m/A, c = 3 × 108 m/s) B m, and the period T=4 s. (µo Coil, No turns with radius b = 0.2 m Solenoid, n turns per meter I = 3.2 sin(wt). 1 = 3.2 sin(wt) V = 16 sin(wt) Variable resistor
A long solenoid has n=900 turns per meter and a current I = 3.2 sin(wt). Inside the solenoid with a= 0.5 m and coaxial with it is a coil that has a radius of b = 0.2 m and consists of Nc = 100 turns in Figure. Circuit has a variable resistor, and at t=2 s resistor has 5 2. (a) Find the induced emf in the coil as a function of time if f=10 Hz. (b) Find the self-inductance of solenoid. (c) Find the current Irms of the circuit. (d) Write the expressions for E and B generated by solenoid in the form E %3D 8 sin(kx – wt) and Bmax sin(kx – wt) with numerical values for Bmax» k, and w when the wavelength 2 = 50 = 4n x 10-7 T.m/A, c = 3 × 108 m/s) B m, and the period T=4 s. (µo Coil, No turns with radius b = 0.2 m Solenoid, n turns per meter I = 3.2 sin(wt). 1 = 3.2 sin(wt) V = 16 sin(wt) Variable resistor
College Physics
11th Edition
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Raymond A. Serway, Chris Vuille
Chapter1: Units, Trigonometry. And Vectors
Section: Chapter Questions
Problem 1CQ: Estimate the order of magnitude of the length, in meters, of each of the following; (a) a mouse, (b)...
Related questions
Question
![A long solenoid has n=900 turns per meter and a current I = 3.2 sin(wt). Inside the solenoid
with a= 0.5 m and coaxial with it is a coil that has a radius of b = 0.2 m and consists of Nc = 100
turns in Figure. Circuit has a variable resistor, and at t=2 s resistor has 5 Q.
(a) Find the induced emf in the coil as a function of time iff=10 Hz.
(b) Find the self-inductance of solenoid.
(c) Find the current Irms of the circuit.
(d) Write the expressions for E and B generated by solenoid in the form E
B = Bmax sin(kx – wt) with numerical values for Bmax, k, and w when the wavelength 2 = 50
m, and the period T=4 s. (µo = 4n × 10-7 T. m/A, c = 3 × 10® m/s)
8 sin(kx – wt) and
Coil, No turns with radius b = 0.2 m
Solenoid, n turns per meter
I = 3.2 sin(wt)
I = 3.2 sin(wt)
V = 16 sin(wt)
Variable resistor](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F3437bfa4-2671-4ae7-bea2-c5df99f8a937%2Fe07f0263-98a4-42b0-ab71-8d4c26291f9a%2Fez08e7_processed.png&w=3840&q=75)
Transcribed Image Text:A long solenoid has n=900 turns per meter and a current I = 3.2 sin(wt). Inside the solenoid
with a= 0.5 m and coaxial with it is a coil that has a radius of b = 0.2 m and consists of Nc = 100
turns in Figure. Circuit has a variable resistor, and at t=2 s resistor has 5 Q.
(a) Find the induced emf in the coil as a function of time iff=10 Hz.
(b) Find the self-inductance of solenoid.
(c) Find the current Irms of the circuit.
(d) Write the expressions for E and B generated by solenoid in the form E
B = Bmax sin(kx – wt) with numerical values for Bmax, k, and w when the wavelength 2 = 50
m, and the period T=4 s. (µo = 4n × 10-7 T. m/A, c = 3 × 10® m/s)
8 sin(kx – wt) and
Coil, No turns with radius b = 0.2 m
Solenoid, n turns per meter
I = 3.2 sin(wt)
I = 3.2 sin(wt)
V = 16 sin(wt)
Variable resistor
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 3 steps with 4 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Recommended textbooks for you
![College Physics](https://www.bartleby.com/isbn_cover_images/9781305952300/9781305952300_smallCoverImage.gif)
College Physics
Physics
ISBN:
9781305952300
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning
![University Physics (14th Edition)](https://www.bartleby.com/isbn_cover_images/9780133969290/9780133969290_smallCoverImage.gif)
University Physics (14th Edition)
Physics
ISBN:
9780133969290
Author:
Hugh D. Young, Roger A. Freedman
Publisher:
PEARSON
![Introduction To Quantum Mechanics](https://www.bartleby.com/isbn_cover_images/9781107189638/9781107189638_smallCoverImage.jpg)
Introduction To Quantum Mechanics
Physics
ISBN:
9781107189638
Author:
Griffiths, David J., Schroeter, Darrell F.
Publisher:
Cambridge University Press
![College Physics](https://www.bartleby.com/isbn_cover_images/9781305952300/9781305952300_smallCoverImage.gif)
College Physics
Physics
ISBN:
9781305952300
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning
![University Physics (14th Edition)](https://www.bartleby.com/isbn_cover_images/9780133969290/9780133969290_smallCoverImage.gif)
University Physics (14th Edition)
Physics
ISBN:
9780133969290
Author:
Hugh D. Young, Roger A. Freedman
Publisher:
PEARSON
![Introduction To Quantum Mechanics](https://www.bartleby.com/isbn_cover_images/9781107189638/9781107189638_smallCoverImage.jpg)
Introduction To Quantum Mechanics
Physics
ISBN:
9781107189638
Author:
Griffiths, David J., Schroeter, Darrell F.
Publisher:
Cambridge University Press
![Physics for Scientists and Engineers](https://www.bartleby.com/isbn_cover_images/9781337553278/9781337553278_smallCoverImage.gif)
Physics for Scientists and Engineers
Physics
ISBN:
9781337553278
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
![Lecture- Tutorials for Introductory Astronomy](https://www.bartleby.com/isbn_cover_images/9780321820464/9780321820464_smallCoverImage.gif)
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:
9780321820464
Author:
Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:
Addison-Wesley
![College Physics: A Strategic Approach (4th Editio…](https://www.bartleby.com/isbn_cover_images/9780134609034/9780134609034_smallCoverImage.gif)
College Physics: A Strategic Approach (4th Editio…
Physics
ISBN:
9780134609034
Author:
Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:
PEARSON