A long rope with a mass per length of 0.49 kg/m is stretched horizontally with a tension of 350 N. The rope oscillates transversely in simple harmonic motion with a frequency f = 665 Hz and an amplitude of A = 0.037 m. At t = 0, the left end of the cord has a downward displacement of D(0, 0) = -0.012 m and is falling. Let the general displacement function of the wave be Dlx, t) = Asin(kx - wt + ) as the wave travels in the positive x direction. Determine the a. speed, b. wave number, c. angular frequency, d. phase angle, and e. displacement function for the traveling wave.

College Physics
11th Edition
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Raymond A. Serway, Chris Vuille
Chapter1: Units, Trigonometry. And Vectors
Section: Chapter Questions
Problem 1CQ: Estimate the order of magnitude of the length, in meters, of each of the following; (a) a mouse, (b)...
icon
Related questions
icon
Concept explainers
Topic Video
Question
A long rope with a mass per length of 0.49 kg/m is stretched horizontally with a
tension of 350 N. The rope oscillates transversely in simple harmonic motion with
a frequency f = 665 Hz and an amplitude of A = 0.037 m. At t = 0, the left end of
the cord has a downward displacement of D(0, 0) = -0.012 m and is falling. Let the
general displacement function of the wave be Dlx, t) = Asin(kx - wt + ) as the
wave travels in the positive x direction. Determine the
a. speed,
b. wave number,
c. angular frequency,
d. phase angle, and
e. displacement function for the traveling wave.
Transcribed Image Text:A long rope with a mass per length of 0.49 kg/m is stretched horizontally with a tension of 350 N. The rope oscillates transversely in simple harmonic motion with a frequency f = 665 Hz and an amplitude of A = 0.037 m. At t = 0, the left end of the cord has a downward displacement of D(0, 0) = -0.012 m and is falling. Let the general displacement function of the wave be Dlx, t) = Asin(kx - wt + ) as the wave travels in the positive x direction. Determine the a. speed, b. wave number, c. angular frequency, d. phase angle, and e. displacement function for the traveling wave.
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps with 2 images

Blurred answer
Knowledge Booster
Simple Harmonic Motion
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
College Physics
College Physics
Physics
ISBN:
9781305952300
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning
University Physics (14th Edition)
University Physics (14th Edition)
Physics
ISBN:
9780133969290
Author:
Hugh D. Young, Roger A. Freedman
Publisher:
PEARSON
Introduction To Quantum Mechanics
Introduction To Quantum Mechanics
Physics
ISBN:
9781107189638
Author:
Griffiths, David J., Schroeter, Darrell F.
Publisher:
Cambridge University Press
Physics for Scientists and Engineers
Physics for Scientists and Engineers
Physics
ISBN:
9781337553278
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:
9780321820464
Author:
Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:
Addison-Wesley
College Physics: A Strategic Approach (4th Editio…
College Physics: A Strategic Approach (4th Editio…
Physics
ISBN:
9780134609034
Author:
Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:
PEARSON