A light ray enters the Earth's atmosphere and descends vertically through distance h = 100 km to reach the surface. Since the density and composition of the atmosphere vary, its index of refraction also varies as a function of elevation. At the top of the atmosphere, where light enters, the index of refraction is exactly 1.000. At the bottom, where light reaches Earth's surface, the index of refraction is 1.000293. Suppose the refractive index varies linearly between these two values. Calculate the time required for light to travel through the atmosphere. Hint: The definition of velocity v = dx/dt can be written as dt = dx/v = n dx/c. Integrate this expression to find the time. Note that n is not a constant; you must express n as a function of x.
A light ray enters the Earth's atmosphere and descends vertically through distance h = 100 km to reach the surface. Since the density and composition of the atmosphere vary, its index of refraction also varies as a function of elevation. At the top of the atmosphere, where light enters, the index of refraction is exactly 1.000. At the bottom, where light reaches Earth's surface, the index of refraction is 1.000293. Suppose the refractive index varies linearly between these two values. Calculate the time required for light to travel through the atmosphere. Hint: The definition of velocity v = dx/dt can be written as dt = dx/v = n dx/c. Integrate this expression to find the time. Note that n is not a constant; you must express n as a function of x.
College Physics
11th Edition
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Raymond A. Serway, Chris Vuille
Chapter1: Units, Trigonometry. And Vectors
Section: Chapter Questions
Problem 1CQ: Estimate the order of magnitude of the length, in meters, of each of the following; (a) a mouse, (b)...
Related questions
Question
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 2 steps
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Recommended textbooks for you
College Physics
Physics
ISBN:
9781305952300
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning
University Physics (14th Edition)
Physics
ISBN:
9780133969290
Author:
Hugh D. Young, Roger A. Freedman
Publisher:
PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:
9781107189638
Author:
Griffiths, David J., Schroeter, Darrell F.
Publisher:
Cambridge University Press
College Physics
Physics
ISBN:
9781305952300
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning
University Physics (14th Edition)
Physics
ISBN:
9780133969290
Author:
Hugh D. Young, Roger A. Freedman
Publisher:
PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:
9781107189638
Author:
Griffiths, David J., Schroeter, Darrell F.
Publisher:
Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:
9781337553278
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:
9780321820464
Author:
Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:
Addison-Wesley
College Physics: A Strategic Approach (4th Editio…
Physics
ISBN:
9780134609034
Author:
Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:
PEARSON